
Intelligent Data Analysis
Lecture Notes on
Classification

Peter Tiňo

The next topic now takes us to the world of supervised learning. Such learning occurs in
situations where we would like to associate a given input (vector) with a certain value. This
value can be e.g. a class label (e.g. cancer, or non-cancer), or it can be a real value (e.g.
given past values of a stock index in the form of input vector, what is the predicted value for
that stock next day?).

We will now turn our attention to classification. For example, given a medical sample
from a patient, we want to decide from previous analysis and observations on other subjects
(both patients and healthy controls) whether that patient has cancer or not. This time, each
data item will have two components - a data point (input) xi ∈ Rd, and a ‘label’ yi ∈ Y ,
where Y = {1, 2, . . . , c} is a label set. Each element of the label set represents a ‘class’,
e.g. cancer (y = 1), non-cancer (y = 2). Sometimes, if there are only two classes, one is
viewed as a ‘positive’ class (y = +1), the other as a ‘negative’ class (y = −1). In this case
Y = {−1,+1}. Our data set will now have the form: D = {(x1, y1), (x2, y2), . . . , (xN , yN)}.

1 k-Nearest Neighbour classifier

There are many classification methods for classifying vectorial data. Even though we will
study the simplest possible model, it will be sufficient to illustrate some of the core issues
associated with performing classification in general.

We will use a simple two-dimensional example to demonstrate how we can classify future
data assuming we already have a ‘training set’ D to work with. Suppose our data set is
divided into two classes: +1 (plotted as blue circles) and -1 (plotted as yellow squares, see
Figure 1).

Consider the scenario where we are given a ‘test point’ x and we want to decide what is
its label y(x). One natural way to do this is to look at the training points from D that are
close neighbours to x and determine what is the ‘majority label’ among them. In particular,
we may look at the k closest data points from D to x to decide its label. This type of classier
is called the k-nearest neighbour (or k-NN) classifier. Figure 1 helps to illustrate this idea.

1

𝑥2

𝑥1

𝒙

Figure 1: A plot of our data set, divided into two classes. We decide the classification of our
new point x by looking at its k nearest neighbours. In this case k = 5.

The role of k, as a model parameter, is to determine the neighbourhood size around the
test that should be consulted before making a prediction about the class label. We have two
extremes for the value of k:

• k = 1 (we look for the closest training point to the test point) and

• k = |D| = N (extremely large neighbourhood of the test point - the whole training
set D). The latter case is a very stupid idea; if our training set has more cases of +1
than -1, then any future test point will immediately have a label of +1 (majority class)!

If k = 1, then the decision boundary between the two classes in the input space will be
very ‘flexible’. This is illustrated in Figure 2. In a sense we feel that this decision boundary
reflects the particular sample D, but not the ‘nature of the problem. What do we mean by
that?

2 Learning beyond the training sample

We can think of our training data D as being generated from the ‘nature’ represented by a
joint probability distribution over inputs and labels, p(x, y). We can express the distribution
using Bayes rule:

2

𝑥2

𝑥1

Figure 2: Overfitting the data.

p(x, y) = p(y) · p(x | y). (1)

This has a very intuitive interpretation: Each training item (xi, yi) is independently gen-
erated by first flipping a coin (drawing from the prior class distribution p(y)) and obtaining
a class label yi. Having fixed the class label yi, we then draw from the class-conditional
distribution over the inputs, p(x | yi), an input xi from the class yi. This is illustrated in
Figure 3.

Of course, if we knew the ‘nature’ p(x, y), we could find a theoretically optimal decision
boundary that will minimize the average miss-classification error of future test inputs. Such
a decision boundary is illustrated by the red dashed line in Figure 3. But, in general, we
do not know the nature behind the data and only have a sample D from it. The role of the
sample is to inform us about the ‘nature’ and help us to construct a decision boundary that
resembles the optimal boundary as much as possible.

Intuitively, a good classifier should use the sample D to capture the essence of what is
distinguishing the two classes in nature, irrespective of what particular points happened to
be generated in D. Let us perform the following mental experiment: Assume that (a-priori)
class +1 is more probable than -1, i.e. p(y = +1) > p(y = −1). Repeatedly generate a
sample D of N training points by independently sampling from p(x, y). For each D, using
some value of k, construct the classifier. How much does the classifier change as we keep
supplying different training sets D generated from the same ‘nature’ p(x, y)?

3

𝑥2

𝑥1

Pr 𝒙 + 1)

Pr 𝒙 − 1)

Figure 3: Class-conditional distributions.

We can summarise the two extreme cases as follows:

i) k = N : This is a very ‘rigid’ model. We almost always have the same decision boundary!
Whatever the test point is, its predicted class will always be the majority class. This
is a very stable (low variance), but pretty bad ‘decision boundary’ - all minority class
points from D will be miss-classified (high model bias). We say that this classifier has
large bias, but low variance.

i) k = 1: This corresponds to a very ‘flexible’ model. As illustrated in Figure 2, every
time we get a new sample D from the same ‘nature’, we will construct a different deci-
sion boundary that closely follows the distribution of points in that particular sample
(high variance). Of course, this classifier will commit a very small error on training
inputs from D (low bias). The low bias is achieved by following the training sample
too closely. We say that we “read too much in the data sample”. The widely varying
decision boundaries across different samples D do not reflect the ‘nature’ very well. In
this case we talk about overfitting the training data.

We have described a very general issue present when non-linear models are involved. How
much ‘flexibility’ (or complexity) should we allow in the model? Too simple a model (k = N)
will be too rigid and have high bias. Too complex a model (k = 1) will be too flexible and
will overfit the particular data we have. We must find a way of selecting the right model
complexity by finding the right compromise between the bias and variance. But we need to
do this using a data sample D, because this is the only information about the nature we
have.

4

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑠𝑡

𝒟

Figure 4: Partition of the data.

3 Training, Validation and test Data

We continue our discussion of classification by looking at how we can use data to build up our
k-NN classifier model, including how to decide on the complexity i.e. what is an appropriate
value for k.

The data we use are divided into three types:

i) Training set - This is used to train or construct our classifier model.

ii) Validation set - This set is used to decide on the model complexity. In the case of
k-NN classifier, we have already shown that this boils down to selecting an appropriate
neighborhood size k. Remember that we cannot simply use the training set for this
task, as the optimal value of k would obviously be 1! In other words, the decision about
the desired model complexity cannot be made on the data sample used to construct/train
the model itself. We must have an ‘objective’ view enabled by a different, independent
data set.

iii) Test set - This is data we do not touch until we built the full model successfully
(i.e. including setting the right model complexity!). This set is useful in estimating
the inherent error the model has, or in other words, to estimate how well the model
generalizes the training data to future unseen inputs.

It is standard practice to split our given data into the training, validation and test sets.
Obviously, we would like all three sets to be as large as possible to guarantee stable model
construction and error estimation.

In the following we will assume that our dataset is rather small, but we have enough data
for at least a reasonable split into two parts. As the test part needs to be untouched in the
model construction phase, we will need to use the other part for both training and validation
purposes. As we do not have access to the test data during the model building, we will refer
to this joint training/validation part as our data D.

5

𝑉1

𝑇1

𝑉2

𝑇2

…

𝑉𝑛

𝑇𝑛

Figure 5: Schematic illustration of data partition in cross-validation.

4 Cross-Validation

As explained above, consider now a situation where |D| is not large enough for a single split
into a training and validation sets. We need a large training set to avoid building a bad
model, but this risks the validation set being very small. We need to work with D in a clever
way to build and tune up our model. Given our data set D, we divide it up into n disjoint
data sets called folds (we can take n to be e.g. 10). For each fold i = 1, 2, ..., n, we declare
it a validation set Vi, leaving the rest of the data D\Vi = Ti to be our training set. Training
a model on Ti yields a validation error Ei on Vi. The following figure illustrates how we use
this technique, called n-fold cross validation.

4.1 Error Analysis

An advantage to this method is that every point in our data is eventually used for both
training and validation, producing validation errors E1, E2, . . . , En. We will take an estimation
of our overall validation error to be

Ē =
1

n

n∑
i=1

Ei.

Note that the individual validation sets Vi are rather small at the expense of larger train-
ing sets Ti. This will cause stable model construction on Ti, but unstable validation error
estimation on Vi. Fortunately, by taking the mean Ē of Ei, we reduce their variability, while

6

preserving their mean. What do we mean by this?

Let X be a random variable representing validation error on validation folds. We can
produce n equally distributed ‘copies’ of X, X1, X2, . . . , Xn, one for each fold. An analogy
to this is that rolling a die n times produces n random variables on the face the die lands on.
Using these copies, we define the random variable Y to be the value of the error estimator
of our model i.e.

Y =
1

n

n∑
i=1

Xi.

Notice that as each Xi are copies of X, E[Xi] = E[X] and V ar[Xi] = V ar[X], for every
i ∈ {1, 2, . . . , n}. Provided we draw from each Xi independently, we have:

E[Y] = E[

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = E[X],

V ar[Y] = V ar

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

V ar[Xi] =
V ar[X]

n
.

Hence, by averaging over our error estimators, we do not change the expected value of Ē ,
but the (square) fluctuations in our estimator are n times smaller.

However, there is a problem with the argument above - Xi are not independent. In our
case, even though for each fold the validation set Vi is disjoint from the training set Ti, the
error estimates Ei, i = 1, 2, ..., n, are dependent, since the training sets Ti and Tj used to
build the models validated on Vi and Vj overlap: Vi ∩ Vj = ∅, but Ti ∩ Tj 6= ∅! Therefore, the
cross-validated errors usually tend to underestimate the true generalization error.

To argue this, note that in general

V ar[Y] = V ar

[
1

n

n∑
i=1

Xi

]

=
1

n2

[
V ar[Xi] +

n∑
i,j=1,i 6=j

Cov[Xi, Xj]

]

=
V ar[X]

n
+
n(n− 1)

n2
γ

=
V ar[X]

n
+
n− 1

n
γ,

where, since the covariances Cov[Xi, Xj] for all i 6= j are the same, we denote the common
covariance value by γ. The problem is that γ 6= 0, in fact γ > 0 because of the large
overlapping portion of the training data for the i-th and j-th folds. It is thus obvious that

7

by considering only V ar[X]/n we underestimate the true uncertainty (fluctuations) V ar[Y]
of the cross-validation error estimate Ē . Note that for larger n, (n− 1)/n ≈ 1, and so

V ar[Y] ≈ V ar[X]

n
+ γ,

meaning that if we have too many cross-validation folds n, even though we reduce the variance
of individual fold error estimates by a factor of 1/n, the fold estimates themselves will be
more unstable (larger V ar[X]) and their covariance γ will be larger, since larger training
parts will be shared between any two folds. Setting n is a trade-off that needs to be carefully
balanced. In practice n = 5 or n = 10 are the most used choices.

5 Metric learning

In many machine learning and data analysis systems the notion a ‘distance’ or ‘similarity’
between data items is crucial. Somewhere in the model formulation there must be something
that in some way looks at the (training) data given to us and ‘compares’ each new previ-
ously unseen test input with that data to somehow produce the corresponding output. The
strategy is that the output associated with the new test input should in some way follow the
known outputs associated with previously seen data that are ‘similar’ or ‘close’ to the test
input. This is made plainly clear in k-NN classification, where it is commonly automatically
assumed that the distance is the usual Euclidean metric. However, such notion of continuity
- ‘similar’ inputs will often lead to ‘similar’ outputs (whatever the notion of ‘similarity’ used)
- is a very general principle behind many machine learning algorithms. It is either expressed
somehow implicitly in the model formulation, or quite explicitly, as in the case of k-NN.

Consider a data set D = {(x1, y1), . . . , (xN , yN)}, where each xi ∈ R2 is a data point and
yi ∈ {+1,−1} is a binary class label. Plotting the data using class markers results in:

It appears that certain directions in R2 carry more ‘weight’ or impact on the classification
of the data, meaning that we need a new model for measuring ‘distance’. For example, when
inside the classes, moving in the direction of red line makes no difference in the class label.
In other words, from the standpoint of this particular classification problem, moving in the
red line direction causes very small change in the distance, since nothing much changes in
the label structure. In contrast, moving in the direction perpendicular to the red line leads
to radical change in the class labelling, so even small steps in that direction would be viewed
as moving a large distance. When applying k-NN it would be better to use this notion of a
distance.

5.1 “Weights” and Metric Tensors

For convenience, we will work in the two-dimensional space R2, but generalization to higher
dimensions is obvious. For points x = [x1, x2]

T and y = [y1, y2]
T , square of the usual

Euclidean distance between them, d2(x,y), is:

8

Figure 6: Schematic illustration of the need of Non-Euclidean distance in classification.

d2(x,y) = ‖x− y‖2

= (x1 − y1)2 + (x2 − y2)2

= (x− y)T (x− y)

= (x− y)T I (x− y),

where I is the identity matrix.

Let us suppose that the vertical direction contributes more to the distance (is “more
important”) than the horizontal component. An intuitive idea to express this is adding
‘weights’ a1, a2 ∈ R≥0, where a1 < a2:

d′2(x,y) = a1(x1 − y1)2 + a2(x2 − y2)2

To write this in a matrix form, if we let A =

[
a1 0
0 a2

]
be a diagonal matrix, then

d′2(x,y) = dA(x,y)2 = (x− y)T A (x− y).

Our weights indicate that in the horizontal direction, things do not change much i.e.
(x1 − y1)2 may be large, d(x,y) is still relatively small. However, (x2 − y2)2 creates a sig-
nificant impact. One way to think about this is the hill analogy; in one direction, we slowly

9

Figure 7: A ‘rotation’ of the original axes. The thickness of the red arrows indicate the significance
of each direction when calculating the distance, each quantified by weights. A neighborhood of a
point would then be an ellipse!

traverse down the hill, but in the other direction the hill gets very steep.

Recall now how in PCA we had a symmetric positive semi-definite1 covariance matrix
and by appropriate rotation of co-ordinate axis we were able to express it purely as a diag-
onal matrix with non-negative terms along the diagonal. In other words, given a squared,
symmetric and positive-definite matrix which is non-diagonal, we can always change the axes
to get a diagonal matrix. We can apply the same arguments here; if our A was non-diagonal,
we can turn it into a diagonal matrix by rotating the axes in which our data is expressed.

Figure 7 gives an example of a lot can change in the distance if we move in the direction
of one diagonal (thick red arrow) and small change in the direction of the other (normal
red arrow). The landscape metaphor is illustrated by the superimposed eclipse. The square,
symmetric and positive semi-definite matrix A we have been using is called a metric tensor.
This matrix governs our notion of distance between any two points, denoted as dA.

More precisely, given a metric tensor A, we can understand what kind of distance it
represents by diagonalizing A through its eigenvectors vi (stored as columns of matrix V)

1A positive-definite d× d matrix A just means that xTAx is non-negative for every non-zero vector x of
d real numbers.

10

and the associated eigenvalues λi (stored as diagonal elements of a diagonal matrix S):

A = VSVT .

The metric dA(x,y) represented by the metric tensor A enhances and suppresses differences
between x,y in the direction of eigenvectors vi with large and small eigenvalues λi, respec-
tively.

5.2 Metrics and Classification

Going back to classifying data, it may be that certain features are more important than others.
It may also be that certain directions of input features (combinations of input features) are
more important for classification than others. Those directions can be expressed by unit
direction vectors vi. In our example above, the metric tensor in the original co-ordinates can
be expressed as diagonal metric tensor in the new co-ordinates indicated by v1 and v2:

A = [v1,v2] ·
[
a1 0
0 a2

]
· [v1,v2]

T .

a1, a2 ≥ 0 are the weights for v1 and v2, respectively, indicating their significance in our
new metric.

There are several techniques to automatically learn the appropriate (global) metric tensor
A from the data, together with the classifier. Such techniques fall within the general category
of metric learning. One can also allow the metric tensor to change smoothly over the input
space (thus creating Riemannian metric structure), but such extensions are well beyond the
scope of this course.

11

