
Intelligent Data Analysis
Lecture Notes on

Clustering, Topographic Maps

Peter Tiňo

So far we know how to reduce the dimensionality of large complex data sets and perform
queries for terms in a library containing many documents. Of course, one has to be careful
- PCA is a linear dimensionality reduction technique. Consider, for example, the scenario
where we plot some two-dimensional data on a graph and we obtain the following result:

We see that the data is inherently one-dimensional but does not lie along any linear space.
PCA does not provide us with a way to find non-linear axes!

For our next topic, we would like to see if there are any natural “groups” or “clusters”
within our data. This is a different question about the data that will require a different
technique. Such a question can be motivated e.g. in the lossy communication setting:
Suppose we want to communicate our data set D through some sort of information channel.
If |D| (the size of D) and the data dimensionality d is large, transmitting the full data will
be very expensive. We want to find a way to compress the data whilst minimizing the
information loss when doing so.

1

1 Vector Quantization

Let D = {x1,x2, . . . ,xN} be our data set, xi ∈ Rd. D has N · d pieces of information
(numbers), and our aim is to reduce the information we need to transmit about D. What
we can do is to represent our points using a small number of vectors B = {b1,b2, . . . ,bM},
bj ∈ Rd, with M << N , and transmit those instead. Each of these bj are called codebook
vectors. The set B is called the codebook.

𝒃1

𝒃2

𝒃3

𝒙𝑖

∥ 𝒙𝑖 − 𝒃1 ∥

Instead of transmitting a data point xi, we only need to transmit the codebook vector
closest to it. To find which codebook vector is closest to xi, for each bj we need to calculate
the distance ||xi − bj|| and choose the index of that codebook vector for which the distance
is minimal. This index can be interpreted as the index of the winner codebook vector in the
competition (among the codebook vectors) for the ‘right’ to represent xi:

win(i) = arg min
j=1,2,...,M

||xi − bj||.

Assuming that we know win(i) for each xi, we now only need to transmit Md+N << Nd
pieces of information; we first transmit our M codebook vectors, and for each data point xi,
i = 1, 2, ...N , we only send the codebook index win(i). Of course this makes sense only if
the data is organized in relatively tight groups.

1.1 Error Analysis: Placing the Codebook Vectors

To have our M codebook vectors accurately represent all the points in our data set, we need
to minimize the quantization error E(M), given by

2

E(M) =
1

N

N∑
i=1

||xi − bwin(i)||.

Note that some prefer to omit the normalization factor 1
N

, but for our purposes this does
not matter. We can employ the following algorithm to ‘intelligently’ place the codebook
vectors in Rd such that we minimize E(M):

1) Randomly place codebook vectors b1, . . . ,bM in Rd. They can be initially placed where
some xi are positioned.

2) For each xi do:

a) Find the closest codebook vector bwin(i),

b) Move bwin(i) a bit closer to xi by computing bwin(i)
new :

bwin(i)
new = b

win(i)
old + η(xi − b

win(i)
old).

η > 0 is known as the learning rate.

Note that if η = 1 in (1), the codebook vector will immediately be placed at xi, thereby
eliminating any quantization error between bwin(i) and xi. However, it is a greedy approach
because this will increase the error between the codebook vector and the neighboring data
points clustered with xi. Remember that all of these points will have bwin(i) as their rep-
resentative. Hence, η should be smaller than 1. In addition, for a constant value of η, the
codebook vectors will never settle down to a single position, even when approaching the
cluster means. They will be always chasing the training points xi as they are picked in the
update process above. Therefore, η needs to gradually decrease over time.

2 The Learning Rate

Let t ≥ 0 denote the ‘time step’ when using our algorithm. So bj(t) represents the position
of the codebook vector bj at time t. To decrease the learning rate over time we can suggest
an exponential decay in η,

η(t) = η(0) · e−
t
τ ,

where η(0) is the initial learning rate. The parameter τ > 0 can be thought of as the ‘time
scale’ of the algorithm i.e. how fast the learning rate decreases. For example, if τ is equal to
60 and time ticks in minutes, then the value of η decreases at an hourly rate. Larger values
of τ will result in slower decrease of the learning rate. How τ is determined varies from
situation to situation, but finding a reasonable value involves running the algorithm several
times and see how small τ can be without hurting the solution (increasing the quantization
error).

We now give an iterative version of our algorithm as a function of t:

3

1) Let bj(0) be the position of codebook vector bj at t = 0. They can be initially placed
at randomly selected data points in the data set.

2) For each xi do:

a) Find the closest codebook vector bwin(i)(t),

b) Move bwin(i)(t) a bit closer to xi by computing bwin(i)(t+ 1):

bwin(i)(t+ 1) = bwin(i)(t) + η(t)(xi − bwin(i)(t)). (1)

Since our algorithm is randomly initialized, we would need to run it several times, each
time with a different initialization of the codebook vectors, and then pick the solution that
has the smallest quantization error.

3 How many codebook vectors do we need?

The next problem we need to address is setting the parameter M - the number of codebook
vectors M we need to represent the data (or, equivalently, the number of ‘natural’ clusters we
think the data contains). Obviously, if we set M = N , the quantization error E(M) would
be equal to zero (we simply put a codebook vector on top of every point xi). But this is
not a very exciting solution - remember that we are looking for natural groupings in the data.

Figure 1 shows a data set grouped into three well-separated clusters, where we optimally
(with respect to the overall quantization error) place either one, two or three codebook vec-
tors. Notice that having three codebook vectors is optimal in our scenario. If we place 4
codebook vectors, E(M) would still decrease, but at a slower rate, since we begin to inter-
nally split individual clusters.

To find the optimal number of codebook vectors, we have to investigate the quantization
error E(M) as M varies when we employ the algorithm. The error E(M) decreases with
increasing M , but the rate of this decrease can change. We need to identify the “knee”
(M∗, E(M∗)) in the plot (M,E(M)), where the rate of decrease in E(M) changes from faster
to slower. We would then take M∗ as an indication of the ‘optimal’ number of codebook
vectors.

4

𝒃1 𝒃1

𝒃2

𝒃1

𝒃2

𝒃3

Figure 1: How the codebook vectors are placed for M = 1, 2 and 3. Note that the quantization
error always decreases as M increases.

𝐸(𝑀)

𝑀1 2 3 4 5

′′𝐾𝑛𝑒𝑒′′

4 Topographic Mapping

We now return to the problem of finding curvilinear system of axis in cases the data is
inherently low dimensional, embedded in a higher dimensional space, but its low-dimensional
structure is non-linear. Consider, for example, the set of 3-dim points shown in figure 2.

5

x1

x3

x2

β

Figure 2: Points organized along a 1-dimensional manifold.

In such cases we can discover the hidden 1-dimensional structure of high-dimensional
points by running an online vector quantization (VQ) on them, but under the constraint
that the codebook vectors must lie on a one-dimensional “bicycle chain”. This will cause the
codebook vectors to be organized along the “curved noisy tube’ (nonlinear 1-dimensional
manifold), as illustrated in figure 3. But how can we achieve this when updating the code-
book vectors in an on-line vector quantization method described above? One simple idea is
to prescribe an abstract neighborhood structure of codebook vectors before any training begins.
The 1-dimensional bicycle chain structure in figure 3 is an example of such a neighborhood
structure. Then, during the codebook update process, for each point xi, instead of updating
just the winner codebook bwin(i), we update all codebook vectors, but not all to the same
degree. The closer is the codebook vector in the abstract neighborhood structure to bwin(i),
the more it gets updated (pushed towards xi). A codebook vector far away in the abstract
neighborhood structure from bwin(i) (e.g. on the other side of the bicycle chain from bwin(i))
will get updated only negligibly.

Formally, we can represent the degree to which a codebook vector bj is prescribed to be
a neighbor of bwin(i) through a neighborhood function h(win(i), j) taking values in the inter-
val [0, 1]. We stress that the prescribed neighborhood relations between codebook vectors
(which codebook vectors should be placed next to each other in the data space) are decided
before seeing the actual data. Hence, the neighborhood function operates only on the code-
book vector indices, not on their actual positions in the data space! Moreover, we would,
of course, like the value of the neighborhood function to be maximized if j = win(i), i.e.
h(win(i), win(i)) = 1. We would also like the value of h(win(i), j) to diminish the further
away the index j is in the prescribed neighborhood structure from win(i).

One widely used formulation of the neighborhood function is through a Gaussian kernel

6

b
1

b
1x1

x3

x2

b
2

b
3 b

M−1

b
M

b
2

b
3

b
M−1

b
M

β

Figure 3: 1-dimensional “bicycle chain” organization of codebook vectors.

positioned on top of win(i):

h(win(i), j) = e−
(win(i)−j)2

σ2 .

Here, (win(i)− j)2 is the (square) distance between the indexes win(i) and j on the bicycle
chain and σ is the parameter controlling the ‘width’ of the neighborhood.

Initially, the neighborhood width σ should be large in order to allow for broad cooperation
of codebook vectors, so that all of them get into the cloud of points. In this stage the model
gets roughly organized within the data points. Once that has been achieved, a more refined
fine-tuning of the codebook vector positions can start. This can be achieved by allowing the
neighborhood width to get more and more specific (smaller) so that the order of indexes as
prescribed in the bicycle chain is strictly imposed.

Analogously to the learning rate, we can suggest an exponential decay in σ:

σ(t) = σ(0) · e−
t
ν ,

where ν > 0 is a ‘time scale’ controlling how fast the neighborhood width decays and σ(0) is
the initial neighborhood width.

The modified algorithm now reads:

1) Let bj(0), j = 1, 2, ...,M , be the randomized initial positions of codebook vectors bj

at t = 0.

2) For each xi do:

a) Find the closest codebook vector bwin(i)(t),

7

x1

x3

x2

β

Data Space

Computer Screen

Figure 4: Generalization of the 1-dimensional neighborhood structure of the bicycle chain to
a 2-dimensional structure of the “fishing net”.

b) Move all codebook vectors a bit closer to xi (to the degree prescribed by the
learning rate and the neighborhood function):

bj(t+ 1) = bj(t) + η(t) · h(win(i), j) · (xi − bj(t)). (2)

Of course, we can generalize the neighborhood structure of bicycle chain to any convenient
structure, for example a 2-dimensional grid on our computer screen. We can simply cover
the computer screen with a regular 2-dimensional grid of nodes. This is illustrated in figure
4.

Finally, once the 2-dimensional topographic mapping is learnt, we can visualize high-
dimensional data points xi as their 2-dimensional projections on the computer screen. This
can be simply done by identifying the projection x̃i with the index (grid point) win(i) on
the computer screen corresponding to the codebook vector wwin(i) closest to xi in the data
space.

8

