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Intelligent Data Analysis - Topographic Maps

Discovering low-dimensional spatial layout in

higher dimensional spaces - 1-D/3-D example

The structure of points x = (x1, x2, x3)T in R
3 is inherently 1-

dimensional and the points are linearly embedded in a 3-dimensional

space.
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β
• 3 types of points x

• Use PCA to get

the direction of β.

• Draw the 1-D

projections
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Intelligent Data Analysis - Topographic Maps

Discovering low-dimensional spatial layout in

higher dimensional spaces - 2-D/3-D example

The structure of points x = (x1, x2, x3)T in R
3 is inherently 2-

dimensional and the points are linearly embedded in a 3-dimensional

space.

x1

x3

x2

β

• 3 types of points x

• Use PCA to get the

principal directions of β.

• Draw the 2-D

projections
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Intelligent Data Analysis - Topographic Maps

Discovering low-dimensional spatial layout in

higher dimensional spaces - 1-D/3-D example

The structure of points x = (x1, x2, x3)T in R
3 is inherently 1-

dimensional but this time the points are nonlinearly embedded in

a 3-dimensional space.

x1

x3

x2

β

• 3 types of points x

• In this case, we

cannot use PCA to get

the projection curve β.

• Draw the 1-D

projections onto β
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Intelligent Data Analysis - Topographic Maps

Discovering nonlinear low-dimensional spatial

layout in higher dimensional spaces

Imagine that we have n-dimensional points x = (x1, x2, ..., xn)T ∈

R
n and the points are inherently 2-dimensional, i.e. lie on a

smooth nonlinear 2-dimensional manifold embedded in R
n.

PCA cannot be used to discover this structure, but what else can

be used?

Draw an example of points lying on a smooth 2-dimensional man-

ifold in R
3 and draw the 2-dimensional projections.
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Intelligent Data Analysis - Topographic Maps

Vector Quantization (VQ)

Imagine that we have many n-dimensional points xi = (xi
1, x

i
2, ..., x

i
n)T ∈

R
n, i = 1, 2, ..., N .

We would like to transmit all the points x1,x2, ...,xN through a

communication channel.

Considering that we may be willing to accept a small loss in pre-

cision can we come up with an efficient communication protocol?

Idea:

Represent points by a small number of ‘representative vectors’

b1,b2, ...,bM ∈ R
n and transmit only those.
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Intelligent Data Analysis - Topographic Maps

VQ

Take advantage of the cluster structure in the data xi, i =

1, 2, ..., N . To minimize the representation error, place the repre-

sentatives b1,b2, ...,bM , known as codebook vectors, in the center

of each cluster.
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• To transmit x1,x2,x3,x4, ...,

first transmit full information

about the codebook

{b1,b2,b3}

• Then instead of each point

xi, transmit just the index of

its closest representative

codebook vector.
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Intelligent Data Analysis - Topographic Maps

VQ - algorithm

To transmit data points x1,x2, ...,xN ∈ R
n, follow the following

procedure:

1. Place a smaller number of codebook vectors b1,b2, ...,bM ∈ R
n,

M < N , into the cloud of points {x1,x2, ...,xN}.

2. Transmit all coordinates of the codebook vectors bj = (bj
1, b

j
2, ..., b

j
n)T ,

j = 1, 2, ..., M .

3. Go through the data points xi, i = 1, 2, ..., N , and instead of

transmitting each point xi transmit the identity (index) win(i) of

the codebook vector bwin(i) that is closest to xi:

win(i) = argmin
j=1,2,...,M

‖bj − xi‖
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Intelligent Data Analysis - Topographic Maps

VQ - Placing the codebook vectors

There are many procedures for step 1 of the previous algorithm.

Here is an iterative one:

1. Randomly place codebook vectors b1,b2, ...,bM in R
n.

For example, make them identical with some data points chosen

at random from {x1,x2, ...,xN}.

2. Cycle through the set of data points and for each point xi do:

(a) Find the closest codebook vector bwin(i).

(b) Move bwin(i) a bit closer to xi:

bwin(i)
new = b

win(i)
old

+ η · (xi − b
win(i)
old

),

where η > 0 is a small ‘learning rate’.
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Intelligent Data Analysis - Topographic Maps

VQ - Learning rate

The learning rate is actually not a constant, but is gradually

decreased after each time step:

η(t) = η(0) · e−
t
τ .

• τ > 0

determines the ‘time scale’, i.e. how fast will the learning rate

decrease.

• η(0)

is the initial learning rate.

This forces the training process for the codebook to converge.

Peter Tiňo 9



Intelligent Data Analysis - Topographic Maps

Constrained VQ

You can discover a hidden 1-dimensional structure of high-dimensional

points by running a VQ on them, but constrain the codebook vec-

tors b1,b2, ...,bM to lie on a one-dimensional ‘bicycle chain’.
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This way the codebook

vectors will organize

themselves along the

‘curved noisy tube’

(nonlinear 1-dimensional

manifold)
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Intelligent Data Analysis - Topographic Maps

Constrained VQ - Placing the codebook vectors

1. Randomly place codebook vectors b1,b2, ...,bM in R
n.

2. Cycle through the set of data points and for each point xi do:

(a) Find the closest codebook vector bwin(i).

(b) Move bwin(i) a bit closer to xi:

bwin(i)
new = b

win(i)
old

+ η · (xi − b
win(i)
old

).

(c) Push towards xi also the codebook vectors bj that are

neighbors of bwin(i) on the bicycle chain (1-dimensional grid of

codebook vectors).

For each codebook vector bj, j = 1, 2, ..., M ,

bj
new = bj

old
+ h[win(i), j] · η · (xi − bj

old
).
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Intelligent Data Analysis - Topographic Maps

Quantifying the ‘degree of neighborhood’ -

closeness on the bicycle chain

Function h[win(i), j] quantifies how close on the bicycle chain are

the codebook vectors bwin(i) and bj.

Note that the neighborhood relations between codebooks (which

codebooks should be placed next to each other) are decided be-

fore seeing the actual data! Everything is decided based on in-

dexes win(i) and j of the codebook vectors, and not the codebook

vectors bwin(i) and bj themselves!

We would like:

• h[win(i), win(i)] = 1

• The further away codebook vector no. j is from win(i), the

smaller h[win(i), j] should be.
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Intelligent Data Analysis - Topographic Maps

Quantifying the ‘degree of neighborhood’

Here is one suggestion:

h[win(i), j] = e−
|win(i)−j|

σ

• |win(i) − j|

is the distance between the indexes win(i) and j on the bicycle

chain

• σ

is the ‘width’ of the neighborhood

Peter Tiňo 13



Intelligent Data Analysis - Topographic Maps

Neighborhood width σ

Initially, the neighborhood width σ should be large to allow for

broad cooperation of codebook vectors, so that all of them get

into the cloud of points

After this, the neighborhood width should get more and more

specific (smaller) to allow for fine tuning of topographic structure

of codebook vectors dictated by the order of indexes in the bicycle

chain.

Suggestion: analogy to learning rate adaptation

σ(t) = σ(0) · e−
t
ν .

• ν > 0 – ‘time scale’

• σ(0) – initial neighborhood width.
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Intelligent Data Analysis - Topographic Maps

Two-dimensional grid of codebook vectors

Generalize the notion of ‘bicycle chain’ of codebook vectors: Take

advantage of two-dimensional structure of the computer screen.

Cover it with a 2-dimensional grid of nodes.
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Data Space

Computer Screen
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Intelligent Data Analysis - Topographic Maps

2-dimensional topographic map

1. Given N data points xi = (xi
1, x

i
2, ..., x

i
n)T ∈ R

n and a 2-dim grid

topography of codebook vectors.

2. Randomly place codebook vectors b1,b2, ...,bM in R
n.

3. Cycle through the data points. For each point xi do:

(a) Find the closest codebook vector bwin(i).

(b) For each codebook vector bj, j = 1, 2, ..., M , do:

bj
new = bj

old
+ h[win(i), j] · η · (xi − bj

old
).

h[win(i), j] = e−
‖win(i)−j‖

σ

(c) Decrease the neighborhood width σ(t) and learning rate η(t).
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Intelligent Data Analysis - Topographic Maps

Data visualization using top topographic maps

Train the topographic map

Represent points xi ∈ R
n by two-dimensional projections x̃i on the

computer screen.

x̃i is the (2-dimensional) index win(i) of the codebook vector

bwin(i) that is closest to xi:

x̃i = win(i).
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