
IDA - Data Mining Solutions

Question 1.

i) A possible coding scheme that can be used is:

picking a red ball− 00

picking a green ball− 10

picking a blue ball− 01

ii) The entropy of X is

H(X) =
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= 1.539 (3 d.p)

The value we calculated means that Bob should expect on average 1.539
bits of information when Alice transmits the realisation. In part i), we have
shown that each possibility can be encoded with just two bits so this is not
a surprise.

iii) Let P and Q be two discrete probability distributions on the r.v. X, where
P is the correct distribution Alice uses (the new one, after some of the balls
are taken) and Q the incorrect one Alice thinks is being used (not knowing
that some balls have been removed). So,

P =

{
2

13
,
6

13
,
5

13

}
,

Q =

{
9

20
,
6

20
,
5

20

}
.

We need compute the K-L divergence from P to Q to find the ‘penalty’. So,

DKL(P ||Q) =
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= 0.288 (3 d.p)

Hence, on average the transmission will use 0.288 additional bits when using
the ”wrong” distribution.
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Question 2.

i) For convenience, we let

DKL(P ||Q) = −
∑

x∈A

P (x) log
2

(
Q(x)

P (x)

)
.

Also, we will work with the natural logarithm (log), which will not change
anything as for a ∈ R,

log
2
a =

log a

log 2
.

Furthermore, it can be verified that for a > 0,

log a ≤ a− 1, (1)

with equality if (and only if) a = 1 (plot the graphs of log a and (a − 1)!).
Now,

DKL(P ||Q) ≥ −
∑

x∈A

P (x)

(
Q(x)

P (x)
− 1

)
= −

∑

x∈A

Q(x)+
∑

x∈A

P (x) = −1+1 = 0.

If DKL(P ||Q) = 0, then by (1) this can only happen when

log
Q(x)

P (x)
=

Q(x)

P (x)
− 1, for every x ∈ A ⇔ Q(x) = P (x), for every x ∈ A.

It follows that DKL(P ||Q) = 0 ⇔ P = Q as the converse is trivial.

This inequality we have just proven has a special name called Gibbs’ in-

equality and it has many applications in information theory.

ii) Let Q be a uniform distribution over X i.e. Q(x) = 1

n
for every x ∈ A.

Then by part i),

DKL(P ||Q) = −
∑

x∈A

P (x) log
2

1
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= −
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P (x) log
2
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)
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= −(H(P )− log
2
n)

≥ 0.

It follows that H(P ) ≤ log
2
n.
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Question 3.

i) Delta - it appears less frequently in the documents compared to the other
terms. Also note that it shows up more frequently in d3 which better ‘rep-
resents’ the document.

ii) The computed vector of weights for each document are1

x1 = (1.66× 10−3, 8.3× 10−4, 1.66× 10−3, 2× 10−3)T ,

x2 = (8.3× 10−4, 1.66× 10−3, 0, 0)T ,

x3 = (0.0249, 0.0332, 0.0249, 0.2),

x4 = (0, 0, 8.3× 10−3, 0)T .

Question 4.

i) First, we transform each document into a set of weights using TFIDF:

x1 = (0.0222, 0.0971)T ,

x2 = (2.22× 10−3, 1.94× 10−3)T ,

x3 = (0.0445, 0.0194)T ,

x4 = (4, 45× 10−4, 0)T ,

x5 = (0, 0)T ,

x6 = (0.0111, 0.0311)T ,

x7 = (0.0222, 0.0728)T .

Next, we find the co-variance matrix C of these data points and the eigen-
values and eigenvectors:

u1 = (−0.976, 0.216)T , λ1 = 1.72× 10−4

u2 = (−0.216,−0.976)T , λ2 = 1.34× 10−3

We will use the eigenvector that preserves the most variability in the data,
which is u2. The projected data points are

x̃
1 = −0.0996,

x̃
2 = −0.00238,

x̃
3 = −0.0286,

x̃
4 = −9.62× 105,

x̃
5 = 0,

x̃
6 = −0.0327,

x̃
7 = −0.0759.

1logarithm is base 2
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ii) One possible concept present in the documents can be ‘learning how to use

the command line in Linux ’.

iii) Let our query document be dQ = (0, 1)T . Projecting dQ onto the concept

space, we get d̃Q = −0.976. In fact, using cosine similarity, we see that,
with the exception of d5, every document appears to be a good match for
what we want!
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