
Intelligent Data Analysis
Lecture Notes on

Document Mining

Peter Tiňo

1 Representing Textual Documents as Vectors

Our next topic will take us to seemingly very different data spaces - those of textual doc-
uments. We will outline how to perform analysis in such spaces. Our key step will be
representation of documents as (potentially very high-dimensional) vectors. This will be
done through identifying co-ordinates with terms. Each term is a specific word or phrase,
such as “equation”, “solution”, “sun” etc. We then represent a document as a vector by
specifying the value (‘strength’) of each co-ordinate (term) for that document.

Let D = {d1, d2, . . . , dN} be our document set (library) and T = {t1, t2, . . . , tT} be the
set of terms. In a realistic scenario, |T | = T can be a large number and we will need to pick
the relevant terms that best represent the variety of documents in our dataset.

We want to transform the i-th document dii into a vector:

di 7→ xi = (xi1, x
i
2, . . . , x

i
T)T ∈ RT

Each xik ≥ 0 is a ‘weight’ corresponding to the term tk. It quantifies how ‘important’ the
term is in the document di. How should we calculate this weight? We propose a couple of
ideas:

i) xik is binary - is the term in the document or not? This is a bit simple, but can be
efficient to calculate.

ii) xik represents the frequency of the term tk in the document di, denoted N i
k. This is

better, but shorter and longer documents will have values of xik that are not directly
comparable.

iii) xik =
N i

k

|di| is the relative frequency of the term, where |di| denotes the length of the

document. The undesirable influence of the document length on xik is now reduced.

Finally we realize that, of course, if a term is frequent in a given document, than it is
important for it. But what if that term is also frequent in almost all other documents in our

1

dataset (library)? Intuitively, in such a case the term would not characterize the document
very well - it will not make the document ”stand out” among the other documents in the
library. Hence, given a document, we would like to assign a term high weight if it is both
frequent in the document and it makes the document unique - e.g. it occurs sparsely across
other documents. We have the following observations:

1) The more frequent term tk is in document di, the more it is representative of its content;

2) The more documents tk occurs in, the ‘less discriminating’ it is.

We can quantify 1) by using the relative frequency (probability) of the term in the docu-
ment,

N i
k

|di|
= Pr(tk | di) = P (tk). (1)

For 2), we need to know the proportion of documents in the document set (library) D
that contain tk. This can be computed by

Nk

N
= Pr(tk | D) = Q(tk), (2)

where Nk is the number of documents that contain tk and N = |D| is the library size. It
is important to note that both probability distributions P and Q are defined over the same
(term) set T . We say that they share the same support. Combining (1) and (2), we can find
an appropriate way to compute xik:

xik = P (tk) · log2

1

Q(tk)
=
N i

k

|di|
· log2

N

Nk

. (3)

This method is known as term frequency inverse document frequency, or TFIDF for short.
Indeed, for term tk to have high importance in document di, it needs to be frequent in di

(high term frequency P (tk)) and infrequent in the library (low Q(tk), high inverse document
frequency). Intuitively, the log function squashes high values of 1/Q(tk), as it really does not
matter, provided the term is quite unique in the library, whether Q(tk) is as small as 0.001, or
0.0001... We will now justify the TFIDF expression in the framework of Information Theory.

2 Information theoretic view of TFIDF

Suppose Alice has a 4-sided fair dice and wants to relay what value was landed on the dice
to Bob. She cannot do this directly as Bob is overseas, but she can speak to him through
some communication channel that accepts binary messages. We can use the following coding
scheme to represent each singular event when we transmit it through the channel:

Landing a One− 00

Landing a Two− 01

Landing a Three− 10

Landing a Four− 11

2

Note that in this case there seems to be a relationship between the number of bits needed
and the probability 1

4
of the possible events that can occur (under the assumption of uniform

distribution (fair dice). In particular,

log2

1
1
4

= log2 4 = 2 bits.

Using similar reasoning, if Alice used an 8-sided fair dice, then she would need 3 bits of
information to describe all eight possible events. Again,

log2

1
1
8

= log2 8 = 3 bits.

In the general case (not uniform distribution), consider a random variable X and the
associated probability P (x) of an event x. If P (x) is high and x actually happens, we are
not surprised to see x happening and hence do not learn much from realizing that x was
observed. On the other hand, if P (x) is small and x happens, we are surprised and consider
it a useful bit of information. Hence, the information (or the amount of statistical surprise)
in the event x is inversely proportional to its probability of occurrence, 1

P (x)
. It can be shown

that, like in the examples above, the optimal message length (in bits) to use in order to
convey the information that x happened is

log2

1

P (x)
bits. (4)

We now draw many realizations x from the random variable X and each time pass the
information about the observed event x through a communication channel using log2

1
P (x)

bits. What is the average number of bits per realization when coding all of the events? This
is just the expected value of (4):

Definition 2.1. For a random variable X distributed with P (x), let A be the event set. The
entropy of X is defined as

H(X) = EP

[
log2

1

P (x)

]
=
∑
x∈A

P (x) · log2

1

P (x)
.

Now consider the following scenario: Suppose that for a random variable X, distributed
with P (x), when designing a code for the events x ∈ A, we wrongly assume X is distributed
according to a probability distribution Q(x), Q 6= P . Hence each event x ∈ A will be coded
with a message of length

log2

1

Q(x)
bits, (5)

instead of the optimal one log2
1

P (x)
. But the events are actually generated with probability

P , meaning that our average code length is now the expected value of log2
1

Q(x)
with respect

to the distribution P :

3

Definition 2.2. 1 Let P and Q be two probability distributions over the same event set A.
The cross-entropy from P to Q is defined as

Hc(P,Q) = EP

[
log2

1

Q(x)

]
=
∑
x∈A

P (x) · log2

1

Q(x)
. (6)

Of course, since we built the code using a wrong distribution Q (instead of P), the average
code length will be higher:

Hc(P,Q) ≥ H(P),

with equality, if (and only if) P = Q. The value of Hc(P,Q) thus reflects (quantifies) how
different are the two distributions P and Q. This difference is sometimes expressed as a
normalized quantity, i.e. the number of additional bits we need to use as a consequence of
mis-specifying Q for P : Hc(P,Q) −H(P). This quantity is known as K-L divergence from
P to Q:

DKL[P ||Q] = EP

[
log2

1

Q(x)

]
− EP

[
log2

1

P (x)

]
=
∑
x∈A

P (x) · log2

(
1

Q(x)

)
−
∑
x∈A

P (x) · log2

(
1

P (x)

)
=
∑
x∈A

P (x) ·
[
log2

(
1

Q(x)

)
+ log2 P (x)

]
=
∑
x∈A

P (x) · log2

P (x)

Q(x)
.

Using (1), (2) and comparing the TFIDF expression (3) with (6), we see that TFIDF
weights can be viewed as contributions to the cross-entropy from the term distribution in the
particular document to the term distribution across the whole library.

3 ‘Concepts’ and Co-occurring Terms

In the previous sections we discussed how to transform a document set D = {d1, d2, . . . , dN}
into vectors x1,x2, . . . ,xN ∈ RT according to some keywords or terms that characterise the
documents. This leaves us with the problem of how to deal with thousand terms (typically,
T ≈ 1000) and a library containing a huge number of documents. This is where we apply
what we learnt in principal component analysis. To demonstrate why, suppose that we want
to search for terms “solution” and “equation” in our library, calculating the weights for each
document and plotting the data (vector representations of documents) as shown:

1see https://en.wikipedia.org/wiki/Cross_entropy for details

4

"݊݅ݐݑ݈ݏ"

"݊݅ݐܽݑݍ݁"

It is obvious that we see some sort of structure in the document set. In particular, the
terms “solution” and “equation” have high co-occurrence, implying some sort of ‘semantics’
behind the documents, represented by the red dashed line. For example, a detected high co-
occurrence of the terms “solution” and “equation” in the documents suggests the existence of
an abstract semantic topic (concept) in the documents that can be characterised as “solving
mathematical equations”. Analogously, high co-occurrence of terms “cloud”, “rain”, “sun”
etc. points to an abstract concept of “weather” discussed in the documents. So, by applying
PCA we are able to reduce our term set into the ‘semantic’ or ‘concept’ space spanned by
the dominant eigenvectors of the data covariance matrix. Let c be the number of ‘concepts’
(dominant eigenvectors) we find within the data, where usually c << T suffice to preserve
substantial data variation.

D = {d1, d2, . . . , dN} TFIDF−−−−→ x1,x2, . . . ,xN ∈ RT PCA−−→ x̃1, x̃2, . . . , x̃N ∈ Rc

4 Querying in Latent Semantic Analysis (LSA)

Latent semantic analysis projects document vectors into the concept space, as discussed
above. Typing few keywords, we form a mini query document that is then projected onto the
concept space. Then we ask how ‘similar’ it is compared to the other documents expressed
in the concept space. The degree of similarity can be quantified e.g. through cos of the angle
between the query document and a document in the library (both, of course, projected to
the c-dimensional concept space).

1) For our document set D = {d1, d2, . . . , dN}, transform each document into a vector
representation using TFIDF.

5

2) Using the co-variance matrix C of these vectors, find the eigenvectors and their corre-
sponding eigenvalues:

u1,u2, . . . ,uT ∈ RT

λ1, λ2, . . . , λT ∈ R≥0.

3) Pick the c < T most significant vectors u1,u2, . . . ,uc such that λ1 ≥ λ2 ≥ . . . ≥ λc.
These direction vectors will represent the ‘concepts’ within our document set.

4) If we let U = [u1,u2, . . . ,uc] be our concept matrix, project the documents onto the
concept space using the expression

x̃j = UTxj.

5) Project the query document represented as a vector dQ ∈ RT onto the concept space:

d̃Q = UTdQ.

6) To search for documents similar to d̃Q ∈ Rc in our reduced space, we find the angle
between a document x̃i and the query d̃Q:

cosα =

(
d̃Q

)T
x̃i

||d̃Q|| · ||x̃i||

7) Return documents that have cosα greater than some pre-defined threshold.

6

