Question 1.

) EX] = (25,27

—

i) Var[X,] = 8.75, Var[Xs] = 3.5
i) Cov[Xy, Xo] = 4
Question 2. Notice that the expected value for each data dimension is zero. So,
Using the matrix
-3 2 6 -5 -3 2 4 =3
x=| -7 -1 -2 16 -6 -7 -1 8 ,
-1 -6 6 -1 4 2 -2 =2

We see that
o 14 —12125 2.75
Cou[X]=-xx' = | —12.125 575  —8.375
8 275  —8375  12.75

Question 3. The shape of the data cloud appears symmetric about the x5 axis.
The variables X; and X, show a different covariance for each side of the z, axis.
Regardless of the parity of (X; —E(X})), (X2 —E(X32)) will be both positive and
negative “with equal measure”, resulting in Cov[X;, X3] ~ 0. So, we expect that

Cmm:(ﬁ‘i)

where A; > Ay (we assume equal scale for z; and x5 in the figure).
Question 4. The (normalised) eigenvectors values of A are

v = (0.639,0.468,0.611)"
= (0.839, —0.317, —0.443)"
vs = (—0.0105, —0.780,0.625)"

The eigenvalues of vy, vy and v3 are 8.71, -3.15 and 0.437 respectively.

Question 5. We see that
Cov[X;, X,] = — E[X1])(X; — E[X3)])]

o[ (5 )
1[( [X1]+u1> (X2 — 2 —UIQE[XQ]wz)]

= E[(X1 — E[Xi]) (X2 — E[X5])]

0102

= Corr(Xy, X2), by definition.
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Question 6.

i) When we want to preserve a proportion of the variability in the data, say

p, we pick the eigenvectors vi,va, ..., v; to be our new axes for the data,
where ¢ € {1,2,...,d} is the smallest possible integer such that

ij:l )\n Z 0

Zm:l )\m

ii) Notice that
MA+A+Ay 4T

M+ X+ A3+ 498

Therefore we choose v, vy and v3 for our new axes.

0.96.

Question 7.

. 406 0.446
) C= ( 0.446  3.25 )

ii) The normalised eigenvectors of C and corresponding eigenvalues are

v = (0.914,0.406)", \; = 4.26
vy = (—0.406,0.914)", \; = 3.05

Therefore, we can decompose C as
C_ 0914 —-0.406 \ (426 0 . 0.914 0.406
~\ 0406 0.914 0 3.05 —0.406 0914 /-
iii) Since A; > Ay, we pick vy as our new axis. If we let D be our project data

set, then

D ={—0.611, —0.812,0.305, —1.12,0.711, —0.203, 2.84,
0.914,2.74,3.15,2.13,4.42, 4.87, 4.93} '

Question 8.
i) Consider the (i, )" element of C:
(Cij = El(Xi — pa) (X — )] = E[Xi XG] — paps;. (1)

Verify that this is indeed true!



So, using (1), we can write

E[Xle] E[Xle] 11 cee M1 fg
C= L -1
E[XXm] E[XdXd] Maltr - Haltd

=E[(X1,....X)" (X1, X)) = (s oo pta)™ - (s 1a)
= E[XX"] - pp’

ii) If we want to show that the eigenvalues of C are always positive, we first
need to prove that C is a positive-definite matrix. This means that for any
non-zero column vector z of dimension d, the scalar z Cz will always be a
positive value.

Let z be a non-zero column vector. We have:
z'Cz =2z" - (EXX"] —pp") - z
z! EXXT — up’] -z

=z E[X-p)(X-p)'] 2z
=E[z" (X — p)(X — p)"2]
=E[(X —n)'2)" (X —p)'2]
=E[(X —p)"2)’]

> 0.

The sixth equality follows from the fact that (X — )Tz is a dot product
(resulting in a scalar), hence (X — )’z = (X —p)?z)?. Furthermore, C is
positive definite if and only if vCVT is positive definite. However, notice
that the column vectors of V form a basis and

2'Cz>052"VCVz> 04 (VI2)"CViz> 05 y'Cy > 0. (2

Since C is a diagonal matrix, the last inequality in (2) holds only if the
diagonal entries (variances) are all positive, proving our claim.



