Question 1.

i) $\widehat{\mathbb{E}[\mathbf{X}]}=(2.5,2)^{T}$
ii) $\left.\left.\widehat{\operatorname{Var}\left[X_{1}\right.}\right]=8.75, \widehat{\operatorname{Var}\left[X_{2}\right.}\right]=3.5$
iii) $\left.\operatorname{Cov} \widehat{\left[X_{1},\right.} X_{2}\right]=4$

Question 2. Notice that the expected value for each data dimension is zero. So, Using the matrix

$$
\chi=\left(\begin{array}{cccccccc}
-3 & 2 & 6 & -5 & -3 & 2 & 4 & -3 \\
-7 & -1 & -2 & 16 & -6 & -7 & -1 & 8 \\
-1 & -6 & 6 & -1 & 4 & 2 & -2 & -2
\end{array}\right)
$$

We see that

$$
\widehat{\operatorname{Cov}[\mathbf{X}]}=\frac{1}{8} \chi \chi^{T}=\left(\begin{array}{ccc}
14 & -12.125 & 2.75 \\
-12.125 & 57.5 & -8.375 \\
2.75 & -8.375 & 12.75
\end{array}\right)
$$

Question 3. The shape of the data cloud appears symmetric about the x_{2} axis. The variables X_{1} and X_{2} show a different covariance for each side of the x_{2} axis. Regardless of the parity of $\left(X_{1}-\mathbb{E}\left(X_{1}\right)\right),\left(X_{2}-\mathbb{E}\left(X_{2}\right)\right)$ will be both positive and negative "with equal measure", resulting in $\operatorname{Cov}\left[X_{1}, X_{2}\right] \approx 0$. So, we expect that

$$
\operatorname{Cov}[\mathbf{X}]=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

where $\lambda_{1}>\lambda_{2}$ (we assume equal scale for x_{1} and x_{2} in the figure).
Question 4. The (normalised) eigenvectors values of \mathbf{A} are

$$
\begin{aligned}
& \mathbf{v}_{1}=(0.639,0.468,0.611)^{T} \\
& \mathbf{v}_{2}=(0.839,-0.317,-0.443)^{T} \\
& \mathbf{v}_{3}=(-0.0105,-0.780,0.625)^{T}
\end{aligned}
$$

The eigenvalues of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are 8.71, -3.15 and 0.437 respectively.
Question 5. We see that

$$
\begin{aligned}
\operatorname{Cov}\left[\widetilde{X}_{1}, \widetilde{X}_{2}\right] & =\mathbb{E}\left[\left(\widetilde{X}_{1}-\mathbb{E}\left[\widetilde{X}_{1}\right]\right)\left(\widetilde{X}_{2}-\mathbb{E}\left[\widetilde{X}_{2}\right]\right)\right] \\
& =\mathbb{E}\left[\left(\frac{X_{1}-\mu_{1}}{\sigma_{1}}-\mathbb{E}\left[\frac{X_{1}-\mu_{1}}{\sigma_{1}}\right]\right)\left(\frac{X_{2}-\mu_{2}}{\sigma_{2}}-\mathbb{E}\left[\frac{X_{2}-\mu_{2}}{\sigma_{2}}\right]\right)\right] \\
& =\mathbb{E}\left[\left(\frac{X_{1}-\mu_{1}-\mathbb{E}\left[X_{1}\right]+\mu_{1}}{\sigma_{1}}\right)\left(\frac{X_{2}-\mu_{2}-\mathbb{E}\left[X_{2}\right]+\mu_{2}}{\sigma_{2}}\right)\right] \\
& =\frac{1}{\sigma_{1} \sigma_{2}} \mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbb{E}\left[X_{2}\right]\right)\right] \\
& =\operatorname{Corr}\left(X_{1}, X_{2}\right), \text { by definition. }
\end{aligned}
$$

Question 6.

i) When we want to preserve a proportion of the variability in the data, say ρ, we pick the eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{i}$ to be our new axes for the data, where $i \in\{1,2, \ldots, d\}$ is the smallest possible integer such that

$$
\frac{\sum_{n=1}^{i} \lambda_{n}}{\sum_{m=1}^{d} \lambda_{m}} \geq \rho .
$$

ii) Notice that

$$
\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}}=\frac{4.78}{4.98} \approx 0.96
$$

Therefore we choose $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} for our new axes.

Question 7.

i) $\mathbf{C}=\left(\begin{array}{cc}4.06 & 0.446 \\ 0.446 & 3.25\end{array}\right)$
ii) The normalised eigenvectors of \mathbf{C} and corresponding eigenvalues are

$$
\begin{aligned}
& \mathbf{v}_{1}=(0.914,0.406)^{T}, \lambda_{1}=4.26 \\
& \mathbf{v}_{2}=(-0.406,0.914)^{T}, \lambda_{2}=3.05
\end{aligned}
$$

Therefore, we can decompose \mathbf{C} as

$$
\mathbf{C}=\left(\begin{array}{cc}
0.914 & -0.406 \\
0.406 & 0.914
\end{array}\right) \cdot\left(\begin{array}{cc}
4.26 & 0 \\
0 & 3.05
\end{array}\right) \cdot\left(\begin{array}{cc}
0.914 & 0.406 \\
-0.406 & 0.914
\end{array}\right) .
$$

iii) Since $\lambda_{1}>\lambda_{2}$, we pick \mathbf{v}_{1} as our new axis. If we let $\widetilde{\mathcal{D}}$ be our project data set, then

$$
\begin{aligned}
\widetilde{\mathcal{D}}= & \{-0.611,-0.812,0.305,-1.12,0.711,-0.203,2.84, \\
& 0.914,2.74,3.15,2.13,4.42,4.87,4.98\}
\end{aligned}
$$

Question 8.

i) Consider the $(i, j)^{t h}$ element of \mathbf{C} :

$$
\begin{equation*}
(\mathbf{C})_{i j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=\mathbb{E}\left[X_{i} X_{j}\right]-\mu_{i} \mu_{j} . \tag{1}
\end{equation*}
$$

Verify that this is indeed true!

So, using (1), we can write

$$
\begin{aligned}
\mathbf{C} & =\left(\begin{array}{ccc}
\mathbb{E}\left[X_{1} X_{1}\right] & \ldots & \mathbb{E}\left[X_{1} X_{d}\right] \\
\vdots & \ddots & \vdots \\
\mathbb{E}\left[X_{d} X_{1}\right] & \ldots & \mathbb{E}\left[X_{d} X_{d}\right]
\end{array}\right)-\left(\begin{array}{ccc}
\mu_{1} \mu_{1} & \ldots & \mu_{1} \mu_{d} \\
\vdots & \ddots & \vdots \\
\mu_{d} \mu_{1} & \ldots & \mu_{d} \mu_{d}
\end{array}\right) \\
& =\mathbb{E}\left[\left(X_{1}, \ldots, X_{d}\right)^{T} \cdot\left(X_{1}, \ldots, X_{d}\right)\right]-\left(\mu_{1}, \ldots, \mu_{d}\right)^{T} \cdot\left(\mu_{1}, \ldots, \mu_{d}\right) \\
& =\mathbb{E}\left[\mathbf{X X}^{T}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{T}
\end{aligned}
$$

ii) If we want to show that the eigenvalues of \mathbf{C} are always positive, we first need to prove that \mathbf{C} is a positive-definite matrix. This means that for any non-zero column vector \mathbf{z} of dimension d, the scalar $\mathbf{z}^{T} \mathbf{C z}$ will always be a positive value.

Let \mathbf{z} be a non-zero column vector. We have:

$$
\begin{aligned}
\mathbf{z}^{T} \mathbf{C} \mathbf{z} & =\mathbf{z}^{T} \cdot\left(\mathbb{E}\left[\mathbf{X X} \mathbf{X}^{T}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right) \cdot \mathbf{z} \\
& =\mathbf{z}^{T} \cdot \mathbb{E}\left[\mathbf{X X} \mathbf{X}^{T}-\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right] \cdot \mathbf{z} \\
& =\mathbf{z}^{T} \cdot \mathbb{E}\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right] \cdot \mathbf{z} \\
& =\mathbb{E}\left[\mathbf{z}^{T}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}\right] \\
& =\mathbb{E}\left[\left((\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}\right)^{T}(\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}\right] \\
& =\mathbb{E}\left[\left((\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}\right)^{2}\right] \\
& \geq 0 .
\end{aligned}
$$

The sixth equality follows from the fact that $(\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}$ is a dot product (resulting in a scalar), hence $(\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}=\left((\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{z}\right)^{T}$. Furthermore, \mathbf{C} is positive definite if and only if $\mathbf{V C V}{ }^{T}$ is positive definite. However, notice that the column vectors of \mathbf{V} form a basis and

$$
\begin{equation*}
\mathbf{z}^{T} \mathbf{C} \mathbf{z} \geq 0 \Leftrightarrow \mathbf{z}^{T} \mathbf{V} \widetilde{\mathbf{C}} \mathbf{V}^{T} \mathbf{z} \geq 0 \Leftrightarrow\left(\mathbf{V}^{T} \mathbf{z}\right)^{T} \widetilde{\mathbf{C}} \mathbf{V}^{T} \mathbf{z} \geq 0 \Leftrightarrow \mathbf{y}^{T} \widetilde{\mathbf{C}} \mathbf{y} \geq 0 \tag{2}
\end{equation*}
$$

Since $\widetilde{\mathbf{C}}$ is a diagonal matrix, the last inequality in (2) holds only if the diagonal entries (variances) are all positive, proving our claim.

