PCA Quiz Questions

MCO

Question 1. We have a data set $\mathcal{D}=\left\{(1,2)^{T},(7,3)^{T},(3,4)^{T},(-1,-1)^{T}\right\} \subset \mathbb{R}^{2}$. Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ be a r.v. with X_{1} and X_{2} random variables for the x_{1} and x_{2} co-ordinates respectively.
i) Find $\widehat{\mathbb{E}[\mathbf{X}]}$.
ii) Find $\left.\widehat{\operatorname{Var}\left[X_{1}\right.}\right], \widehat{\operatorname{Var}\left[X_{2}\right]}$.
iii) Find $\left.\operatorname{Cov} \widehat{\left[X_{1},\right.} X_{2}\right]$.
(give your answers in 3 significant figures)
Question 2. We have a data set $\mathcal{D}=\left\{(-3,-7,-1)^{T},(2,-1,-6)^{T},(6,-2,6)^{T}\right.$, $\left.(-5,16,-1)^{T},(-3,-6,4)^{T},(2,-7,2)^{T},(4,-1,-2)^{T},(-3,8,-2)^{T}\right\} \subset \mathbb{R}^{3}$. Let $\mathbf{X}=$ $\left(X_{1}, X_{2}, X_{3}\right)^{T}$ be a r.v. Find the co-variance matrix $\operatorname{Cov}[\mathbf{X}]$ (give your answers in 3 significant figures).

Question 3. Suppose that we have a 2-dimensional data set \mathcal{D} and we plot the points on a Cartesian graph, producing the following shape as shown:

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ be a r.v. What do you expect the co-variance matrix $\operatorname{Cov}[\mathbf{X}]$ to look like?

Question 4. Suppose we have the 3×3 square matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 4 & 5 \\
3 & 2 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Find all distinct eigenvectors of \mathbf{A} and their respective eigenvalues (give your answers in 3 significant figures).

Question 5. Let \mathcal{D} be a 2-dimensional data set of size N and $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ be a r.v, with X_{1} and X_{2} random variables for the x_{1} and x_{2} co-ordinates respectively. Suppose that for each X_{i} we have calculated the mean μ_{i} and variance σ_{i} using \mathcal{D}.

For $i=1,2$, Let \widetilde{X}_{i} be a new r.v given by

$$
\widetilde{X}_{i}=\frac{X_{i}-\mu_{i}}{\sigma_{i}}
$$

Show that $\operatorname{Cov}\left[\widetilde{X}_{1}, \widetilde{X}_{2}\right]=\operatorname{Corr}\left(X_{1}, X_{2}\right)$, where $\operatorname{Corr}\left(X_{1}, X_{2}\right)$ is the sample correlation coefficient between X_{1} and X_{2} defined as

$$
\operatorname{Corr}\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left[X_{1}, X_{2}\right]}{\sigma_{1} \sigma_{2}} .
$$

Question 6. Suppose that we perform PCA on a d-dimensional data set \mathcal{D}, computing the eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$ and their respective eigenvalues $\lambda_{1} \geq$ $\lambda_{2} \geq \ldots \geq \lambda_{d}$ in the process.
i) When projecting \mathcal{D} onto a lower-dimensional data set, explain what it means when we want to preserve a proportion ρ of the variability in the data.
ii) Suppose that $d=4$ and we find the following eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ and their corresponding eigenvalues:

$$
\begin{aligned}
& \lambda_{1}=2.97, \\
& \lambda_{2}=1.17, \\
& \lambda_{3}=0.64, \\
& \lambda_{4}=0.2 .
\end{aligned}
$$

Which eigenvectors should be picked for our new axes so that 90% of the variation in \mathcal{D} is preserved?

Question 7. In this question we will apply the PCA algorithm discussed in lectures using a 2-dimensional data set.

Let \mathcal{D} be a data set given by

$$
\begin{aligned}
\mathcal{D}=\{ & (-2,-3),(0,-2),(1,-1.5),(-1,-0.5),(1,-0.5), \\
& (0,-0.5),(4,-2),(1,0),(3,0),(3,1),(1,3), \\
& (3.5,3),(4,3),(5,1)\} .
\end{aligned}
$$

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ be a r.v.
i) Find the co-variance matrix \mathbf{C}.
ii) Find the normalised eigenvectors of \mathbf{C} and their corresponding eigenvalues. Write \mathbf{C} in the form $\mathbf{V} \cdot \widetilde{\mathbf{C}} \cdot \mathbf{V}^{T}$, where \mathbf{V} and $\widetilde{\mathbf{C}}$ are matrices as described in the lectures.
iii) Choose the eigenvector that will preserve the most variation in \mathcal{D} and project the data points onto the new axis.
(give your answers in 3 significant figures)
Question 8. Let \mathbf{C} be the co-variance matrix of a d-dimensional r.v $\mathbf{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$.
i) Show that $\mathbf{C}=\mathbb{E}\left(\mathbf{X X}^{T}\right)-\boldsymbol{\mu} \boldsymbol{\mu}^{T}$, where

$$
\boldsymbol{\mu}=\mathbb{E}(\mathbf{X}) .
$$

ii) Prove that the eigenvalues of \mathbf{C} will always be positive.

