PCA Quiz Questions

MCO

Question 1. We have a data set $\mathcal{D} = \{(1,2)^T, (7,3)^T, (3,4)^T, (-1,-1)^T\} \subset \mathbb{R}^2$. Let $\mathbf{X} = (X_1, X_2)^T$ be a r.v. with X_1 and X_2 random variables for the x_1 and x_2 co-ordinates respectively.

- i) Find $\widehat{\mathbb{E}[\mathbf{X}]}$.
- ii) Find $\widehat{Var[X_1]}, \widehat{Var[X_2]}.$
- iii) Find $Cov[X_1, X_2]$.

(give your answers in 3 significant figures)

Question 2. We have a data set $\mathcal{D} = \{(-3, -7, -1)^T, (2, -1, -6)^T, (6, -2, 6)^T, (-5, 16, -1)^T, (-3, -6, 4)^T, (2, -7, 2)^T, (4, -1, -2)^T, (-3, 8, -2)^T\} \subset \mathbb{R}^3$. Let $\mathbf{X} = (X_1, X_2, X_3)^T$ be a r.v. Find the co-variance matrix $Cov[\mathbf{X}]$ (give your answers in 3 significant figures).

Question 3. Suppose that we have a 2-dimensional data set \mathcal{D} and we plot the points on a Cartesian graph, producing the following shape as shown:

Let $\mathbf{X} = (X_1, X_2)^T$ be a r.v. What do you expect the co-variance matrix $Cov[\mathbf{X}]$ to look like?

Question 4. Suppose we have the 3×3 square matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 2 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Find all distinct eigenvectors of \mathbf{A} and their respective eigenvalues (give your answers in 3 significant figures).

Question 5. Let \mathcal{D} be a 2-dimensional data set of size N and $\mathbf{X} = (X_1, X_2)^T$ be a r.v, with X_1 and X_2 random variables for the x_1 and x_2 co-ordinates respectively. Suppose that for each X_i we have calculated the mean μ_i and variance σ_i using \mathcal{D} .

For i = 1, 2, Let \widetilde{X}_i be a new r.v given by

$$\widetilde{X}_i = \frac{X_i - \mu_i}{\sigma_i}.$$

Show that $Cov[\widetilde{X}_1, \widetilde{X}_2] = Corr(X_1, X_2)$, where $Corr(X_1, X_2)$ is the sample correlation coefficient between X_1 and X_2 defined as

$$Corr(X_1, X_2) = \frac{Cov[X_1, X_2]}{\sigma_1 \sigma_2}$$

Question 6. Suppose that we perform PCA on a *d*-dimensional data set \mathcal{D} , computing the eigenvectors v_1, v_2, \ldots, v_d and their respective eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ in the process.

- i) When projecting \mathcal{D} onto a lower-dimensional data set, explain what it means when we want to preserve a proportion ρ of the variability in the data.
- ii) Suppose that d = 4 and we find the following eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_4$ and their corresponding eigenvalues:

$$\lambda_1 = 2.97,$$

 $\lambda_2 = 1.17,$
 $\lambda_3 = 0.64,$
 $\lambda_4 = 0.2.$

Which eigenvectors should be picked for our new axes so that 90% of the variation in \mathcal{D} is preserved?

Question 7. In this question we will apply the PCA algorithm discussed in lectures using a 2-dimensional data set.

Let \mathcal{D} be a data set given by

$$\mathcal{D} = \{(-2, -3), (0, -2), (1, -1.5), (-1, -0.5), (1, -0.5), (0, -0.5), (4, -2), (1, 0), (3, 0), (3, 1), (1, 3), (3.5, 3), (4, 3), (5, 1)\}.$$

Let **X** = $(X_1, X_2)^T$ be a r.v.

- i) Find the co-variance matrix **C**.
- ii) Find the normalised eigenvectors of \mathbf{C} and their corresponding eigenvalues. Write \mathbf{C} in the form $\mathbf{V} \cdot \widetilde{\mathbf{C}} \cdot \mathbf{V}^T$, where \mathbf{V} and $\widetilde{\mathbf{C}}$ are matrices as described in the lectures.
- iii) Choose the eigenvector that will preserve the most variation in \mathcal{D} and project the data points onto the new axis.

(give your answers in 3 significant figures)

Question 8. Let C be the co-variance matrix of a *d*-dimensional r.v $\mathbf{X} = (X_1, X_2, \dots, X_d)^T$.

i) Show that $\mathbf{C} = \mathbb{E}(\mathbf{X}\mathbf{X}^T) - \boldsymbol{\mu}\boldsymbol{\mu}^T$, where

 $\boldsymbol{\mu} = \mathbb{E}(\mathbf{X}).$

ii) Prove that the eigenvalues of **C** will always be positive.