Covariance Matrix Example

In this exercise you will get a hands-on experience with the key theoretical concepts behind Principal Component Analysis. You will work with the following 2-dimensional and 3-dimensional data sets:

- 2-dimensional: zeroVarUnCov.dat, smallVarUnCov.dat, smallVarPosCov.dat, smallVarNegCov.dat, smallerVarUnCov.dat, smallerVarPosCov.dat, smallerVarNegCov.dat
- 3-dimensional: Var3dCov.dat

Each . dat file provides a d-dimensional data set in the form of $d \times N$ matrix $\mathbf{D}=\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)$ that stores $N=500 d$-dimensional data, $d=2,3$, as columns. The data set is obtained by repeated independent draws from a vector random variable $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)^{T}$. Using the data set we can calculate an estimation \mathbf{C} of the covariance matrix $\operatorname{Cov}[\mathbf{X}]$. In particular if all the random variables are centered, i.e. $\mathbb{E}\left[X_{i}\right]=0, i=1, \ldots, d$, the estimation can be given as

$$
\operatorname{Cov}[\mathbf{X}] \approx \mathbf{C}=\frac{1}{N} \mathbf{D D}^{T}
$$

We simply call the estimation \mathbf{C} "covariance matrix" below.
The eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$ of \mathbf{C} specify the new axes. We can project the data set \mathbf{D} onto the new axes as follows:

$$
\tilde{\mathbf{D}}=\mathbf{V}^{T} \mathbf{D}
$$

where $\mathbf{V}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right)$ stores the eigenvectors of $\tilde{\mathbf{C}}$ as columns.
We know that the covariance matrix $\tilde{\mathbf{C}}$ of the points expressed in the new axes is diagonal (all covariances vanish),

$$
\tilde{\mathbf{C}}=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & \lambda_{d}
\end{array}\right]
$$

and $\lambda_{1}, \ldots, \lambda_{d}$ are eigenvalues corresponding to the eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$.
Let us confirm this fact by:

1. calculating $\tilde{\mathbf{C}}$ using the data set $\tilde{\mathbf{D}}$ in the new axes, in the same way as \mathbf{C} in the original axes calculated by 1 D.
2. projecting $\tilde{\mathbf{C}}$ back to the original axes, i.e. checking the equality

$$
\mathbf{C}=\mathbf{V} \tilde{\mathbf{C}} \mathbf{V}^{T}
$$

Figure 1 demonstrates projection and back-projection on a 2-dimensional data set. It starts with a data set \mathbf{D} with its non-diagonal covariance matrix \mathbf{C}, projects them onto the new axes, yielding a diagonal covariance matrix $\tilde{\mathbf{C}}$, and projects them back onto the original axes, yielding a matrix $\mathbf{V} \tilde{\mathbf{C}} \mathbf{V}^{T}$ that coincides with \mathbf{C}. The new axes, found by calculating eigenvectors of \mathbf{C}, are shown as red lines.

Play around with all 2-dimensional data sets, calculate the covariance matrices, obtain the eigenvectors, plot the new axes, project onto the new axes, verify that the eigenvector with maximal eigenvalue indeed captures

[^0]the data better than any of the original axes.
Figure 2 demonstrates the same procedure on a 3-dimensional data set. Data points are coloured either blue, red or black to help understanding. They spread on the triangle in Figure 2 with some noise that positions them slightly off the triangle plane.

Again, eigenvectors of \mathbf{C} give the new axes $\left(\tilde{X}_{1}, \tilde{X}_{2}, \tilde{X}_{3}\right)$ such that the triangle (containing most of the data variance) is on the $\tilde{X}_{1} \tilde{X}_{2}$-plane.

The table in Figure 2 shows 2-dimensional plots of original data \mathbf{D} and projected data $\tilde{\mathbf{D}}$. We can observe that the triangle is not parallel with any of the $X_{1} X_{2}$-plane, $X_{2} X_{3}$-plane or $X_{1} X_{3}$-plane; and that the projection makes the triangle sit exactly on the $\tilde{X}_{1} \tilde{X}_{2}$-plane. Perform all these calculations yourself.

Figure 1: 2-dimensional demonstration

[^0]: ${ }^{1}$ It is worth asking whether the random variables are centered again in the new axes if they are centered in the original axes.

