
Covariance Matrix Example

In this exercise you will get a hands-on experience with the key theoretical concepts behind Principal
Component Analysis. You will work with the following 2-dimensional and 3-dimensional data sets:

• 2-dimensional: zeroVarUnCov.dat,
smallVarUnCov.dat, smallVarPosCov.dat, smallVarNegCov.dat,
smallerVarUnCov.dat, smallerVarPosCov.dat, smallerVarNegCov.dat

• 3-dimensional: Var3dCov.dat

Each .dat file provides a d-dimensional data set in the form of d×N matrix D = (x1, . . . ,xN ) that stores
N = 500 d-dimensional data, d = 2, 3, as columns. The data set is obtained by repeated independent draws
from a vector random variable X = (X1, . . . , Xd)

T . Using the data set we can calculate an estimation C of the
covariance matrix Cov [X]. In particular if all the random variables are centered, i.e. E[Xi] = 0, i = 1, . . . , d,
the estimation can be given as

Cov [X] ≈ C =
1

N
DD

T .

We simply call the estimation C “covariance matrix” below.

The eigenvectors v1, . . . ,vd of C specify the new axes. We can project the data set D onto the new axes as
follows:

D̃ = V
T
D

where V = (v1, . . . ,vd) stores the eigenvectors of C̃ as columns.

We know that the covariance matrix C̃ of the points expressed in the new axes is diagonal (all covariances
vanish),

C̃ =









λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . .

0 0 0 . . . λd









and λ1, . . . , λd are eigenvalues corresponding to the eigenvectors v1, . . . ,vd.

Let us confirm this fact by:

1. calculating C̃ using the data set D̃ in the new axes, in the same way as C in the original axes calculated
by1 D.

2. projecting C̃ back to the original axes, i.e. checking the equality

C = VC̃V
T .

Figure 1 demonstrates projection and back-projection on a 2-dimensional data set. It starts with a data set
D with its non-diagonal covariance matrix C, projects them onto the new axes, yielding a diagonal covariance
matrix C̃, and projects them back onto the original axes, yielding a matrix VC̃V

T that coincides with C. The
new axes, found by calculating eigenvectors of C, are shown as red lines.

Play around with all 2-dimensional data sets, calculate the covariance matrices, obtain the eigenvectors, plot
the new axes, project onto the new axes, verify that the eigenvector with maximal eigenvalue indeed captures

1It is worth asking whether the random variables are centered again in the new axes if they are centered in the original axes.
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the data better than any of the original axes.

Figure 2 demonstrates the same procedure on a 3-dimensional data set. Data points are coloured either
blue, red or black to help understanding. They spread on the triangle in Figure 2 with some noise that positions
them slightly off the triangle plane.

Again, eigenvectors of C give the new axes (X̃1, X̃2, X̃3) such that the triangle (containing most of the data
variance) is on the X̃1X̃2-plane.

The table in Figure 2 shows 2-dimensional plots of original data D and projected data D̃. We can observe
that the triangle is not parallel with any of the X1X2-plane, X2X3-plane or X1X3-plane; and that the projection
makes the triangle sit exactly on the X̃1X̃2-plane. Perform all these calculations yourself.
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Figure 1: 2-dimensional demonstration
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Figure 2: 3-dimensional demonstration
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