
Intelligent Data Analysis
Lecture Notes on

Principal Component Analysis

Peter Tiňo

1 Motivation

When we are given a large multi-dimensional data set (dimensionality is d > 1), it may be
the case that the data is in fact embedded in a low-dimensional linear subspace. As a very
simple example, let D = {x1,x2,x3, . . . ,xN} be a two-dimensional data set of N ∈ N points

xi ∈ R2, i = 1, 2, . . . , N . Each point has d = 2 coordinates, xi = [xi1, x
i
2]

T
, xi1, x

i
2 ∈ R. One

can plot all the points in a two-dimensional Cartesian graph. We may obtain the following
figure:

𝑥1

𝑥2
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It appears that the data has some sort of ”structure”. But what exactly do we mean by
saying that? The data is really 1-dimensional (modulo some ”noise”). This would become
more apparent if we expressed the same data in a new set of co-ordinate axes x̃1 and x̃2,
obtained by rotating our original axes about the origin:

𝑥1

𝑥2

෦𝑥1
෦𝑥2

Most of the data structure is captured by axis x̃1. Projections of our points onto the
second axis x̃2 represent ”noise”. In this sense we can say that our data set is inherently
one-dimensional, aligned along x̃1 with a certain amount of noise aligned along x̃2. In other
words, the axis x̃1 is special - it preserves most of the variability in D. So when projecting
our data onto a lower dimensional subspace, we need to do it ”intelligently” -
i.e. by picking a subspace that contains most of the variability (and structure)
of the original data.

To talk about variability of the data in a quantitative manner, we will borrow notions
from statistics and probability theory. We can do so because we will assume that our data
points were generated by some (unknown) probability distribution (”the nature”). In other
words, the data co-ordinates are realisations of some vector random variable. But let us start
simple by concentrating on a single coordinate (1-dimensional case).
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2 Mean and Variance of a Univariate Random Variable

We will review some fundamental basic concepts from statistics that will be needed for
development of our dimensionality reduction technique. Suppose that we have a random
variable X and we would like to measure its ”variability”. We have realisations of the
random variable X - the data: DX = {x1, x2, . . . , xN} ⊂ R. To characterise X in simple
terms we can ask:

1) What is the ‘center of gravity’ of X? and

2) How much does X fluctuate around this center of gravity?

For question 1), we would like to know what is the average of the data. This is given by
the following definition:

Definition 2.1. Let X be a random variable with probability distribution P and event set
A. The expected value or mean of X, denoted as E[X], is defined by

E[X] =
∑
x∈A

P (X = x) · x. (1)

Equation (1) gives the theoretical quantity of the mean of X, because we assume we
know its distribution P . Also, this definition works for discrete random variables. For the
continuous case, one would need probability density of X and integral over support of X.

In practice we only can estimate what E[X] might be using our data. Our estimation of
the expected value is given by

Ê[X] =
1

N

N∑
i=1

xi. (2)

Now we look at question 2), asking ourselves if there is a way to quantify deviations away
from the mean. To answer this requires some simple intuition: consider the square fluctuation
of a value x of X from the mean:

y = (x− E[X])2.

The values y can be considered realisations of a random variable Y = (X−E[X])2 representing
the square fluctuation of X away from its mean. Our task is then to calculate the expected
value of Y .

Definition 2.2. For a random variable X, let A be its event set. Furthermore, let Y be
the random variable for the square fluctuations about E[X]. The variance of X, denoted as
V ar[X], is defined by

V ar[X] = E[Y ] = E[(X − E[X])2] =
∑
x∈A

P (X = x) · (x− E[X])2. (3)
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Figure 1: Examples of a) low variance and b) high variance.

As V ar(X) is the mean of Y = (X−E[X])2, we can estimate the variance using the data
set:

V̂ ar[X] = Ê[Y ] =
1

N

N∑
i=1

(xi − Ê[X])2 (4)

Remark 2.1. Strictly speaking, for our estimator V̂ ar[X], we should divide the sum by
N − 1 instead of N (to obtain an unbiased estimate). An intuitive reason is that we use data
D to estimate E[X] and the same data is then used again to estimate E[Y ] that employs
E[X]. However, in practice, as N >> 1, we don’t need to worry about this.

3 Quantifying variability of Multivariate Random Vari-

ables

We have established how to quantify the amount of variability/fluctuations of a scalar (uni-
variate) random variable X around its mean. We would now like to generalise these notions
to the case of vector random variables. After all, our data points will be higher dimensional
vectors and, as mentioned before, they will be considered realisations of a vector random
variable X. Again, let us start simple by considering 2-dimensional case d = 2 and two
random variables X1 and X2.

3.1 2-D Example

Let D = {x1,x2,x3, . . . ,xN} ⊂ R2 be our 2-D data set, xi = [xi1, x
i
2]

T
, i = 1, 2, ..., N . We

could compute the variance for each data dimension in isolation, but we might be missing an
important information! What we should be asking ourselves is if the data coordinates are in
some sense ‘statistically linked/coupled’ while their values fluctuate around their means.

Definition 3.1. Let X1 and X2 be random variables. Introduce a new random variable
Z = (X − E[X1]) · (Y − E[X2]). The Co-variance of X1 and X2 is defined by

Cov[X1, X2] = E[Z] = E[(X − E[X1]) · (Y − E[X2])].

To estimate the co-variance of X1 and X2 in practice, if D is taken to be N realisations
of (X1, X2),
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Cov[X1, X2] ≈ ̂Cov[X1, X2] =
1

N

N∑
i=1

(
xi1 − Ê[X1]

)
·
(
xi2 − Ê[X2]

)
.

If the means of the random variables are centered around zero, then the estimate is simply

̂Cov[X1, X2] =
1

N

N∑
i=1

xi1x
i
2.

To demonstrate how the co-variance of X1 and X2 behaves, we consider 3 cases below
where the data set produces a) a positive covariance b) a negative covariance and c) no (zero)
covariance.

𝑎) 𝑏)

𝑐)

𝑥1

𝑥2

𝑥1

𝑥1

𝑥2

𝑥2

The following table provides the parity of (X1 − E[X1]) and (X2 − E[X2]) and the result
of Cov[X1, X2] in each case. In case a) if (X1 − E[X1]) is a positive value then (X2 − E[X2])
is on average also positive, resulting in Cov[X1, X2] being greater than zero. In case b) if
(X1−E[X1]) is a positive value then (X2−E[X2]) is on average negative, resulting in negative
Cov[X1, X2]. Finally, in case c) if (X1 − E[X1]) is a positive value then (X2 − E[X2]) can be
positive or negative ”with equal measure”, resulting in Cov[X1, X2] ≈ 0.

cases (X1 − E[X1]) (X2 − E[X2]) Cov[X1, X2]
a) +/− +/− > 0
b) +/− −/+ < 0
c) +/− +/− in both cases ≈ 0
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3.2 General Case, d ≥ 2

It is unreasonable to expect that our data sets will always be two-dimensional, so how we
generalise our idea of the co-variance when data dimensionality gets larger than 2? We need
to measure covariances of all pairs of coordinates.

Definition 3.2. Consider the vector random variable X = (X1, X2, . . . , Xd)
T , where d ≥ 2.

The co-variance matrix of X is a d× d square and symmetric matrix, defined by

Cov[X] =


V ar[X1] Cov[X1, X2] Cov[X1, X3] ... Cov[X1, Xd]

Cov[X2, X1] V ar[X2] Cov[X2, X3] ... Cov[X2, Xd]
Cov[X3, X1] Cov[X3, X2] V ar[X3] ... Cov[X3, Xd]

. . . ... .

. . . ... .
Cov[Xd, X1] Cov[Xd, X2] Cov[Xd, X3] ... V ar[Xd]


Note that, for each i = 1, 2, . . . , d, Cov[Xi, Xi] = V ar[Xi]. So along the diagonal we have

variances.

Suppose now that we have N realisations of the vector random variable X:

x1 = (x11, x
1
2, ..., x

1
d)

T

x2 = (x21, x
2
2, ..., x

2
d)

T

...

xN = (xN1 , x
N
2 , ..., x

N
d )T .

Let X = (x1,x2, . . . ,xN) be the design matrix storing the N realisations xi of X as
columns. Suppose also that each random variable is centered: E[Xi] = 0, i = 1, 2, . . . , d.
Then we can estimate the co-variance of X by

Cov[X] ≈ Ĉov[X] =
1

N
XX T .

4 Aligning Co-ordinate Axes with the Data

Our objective is to rotate our axes so that the data is“more aligned” with the new axes than
with the original ones. By this we mean that in the new axes system the co-variances vanish
- there is no (linear) interplay between the co-ordinates. All we need to consider are the
variances (average amount of squared fluctuations) along the new axes. It will then be easy
to identify the “good” directions where most of data variation happens and the “redundant
ones” (those where the fluctuations are small/negligible).

Let X̃ = (X̃1, X̃2, . . . , X̃d)
T be the original vector random variable X expressed in the

new axes. The co-variance matrix of X̃ is
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Cov[X̃] =



V ar[X̃1] 0 0 ... 0

0 V ar[X̃2] 0 ... 0

0 0 V ar[X̃3] ... 0
. . . ... .
. . . ... .

0 0 0 ... V ar[X̃d]



How to compute just from the data what our new axes should in order to achieve the
desired result (diagonal covariance matrix)? We will first look at how we project a given data
set onto the new axes. This (as will be clear soon) can be achieved through a (canonical) dot
product of vectors: Let a = [a1, a2, . . . , ad]

T and b = [b1, b2, . . . , bd]
T be vectors in Rd. Let α

be the angle between a and b. The dot product between a and b is

a · b = aTb =
d∑

i=1

ai · bi = ||a|| · ||b|| cosα,

where ||a|| is the (L2) norm (or length) of a, defined as ||a|| =
√
a21 + a22 + . . .+ a2d. Note

that ||a||2 = aTa.

4.1 Changing the Axes - 2-D Case

Let xi = [xi1, x
i
2]

T ∈ R2 be a data point in 2-D space. Our mew axes can be fully specified
by unit vectors (length one) v1 and v2 pointing in the axes directions. Obviously, ‖v1‖ =
‖v2‖ = 1 and v1, v2 are orthogonal, i.e. vT

1 v2 = 0.
When changing our axes (x1, x2) to (x̃1, x̃2), we want to project xi onto v1 and v2 to

obtain x̃i = [x̃i1, x̃
i
2]

T . Let α be the angle between xi and v1.
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To obtain our first co-ordinate x̃i1, we notice that (recall ||v1|| = 1):

x̃i1 = ||xi|| cosα = ||v1|| · ||xi|| cosα = vT
1 xi

Similarly, we also find that x̃i2 = vT
2 xi. Using these facts, let V = [v1,v2] be the matrix

containing the direction vectors for each axes as columns. We see that

VT · xi = x̃i

Suppose now that we are in our new axes system (x̃1, x̃2); how do we express our point x̃i

back in the original system (x1, x2)? We would of course multiply x̃i by the matrix (VT )−1,
the inverse matrix to VT . Because of the properties of the direction vectors (they are or-
thogonal to each other and have length 1 - we also say that they form an orthonormal basis),
finding this matrix is very simple.

Claim: (VT )−1 = V
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Proof.

VT ·V =

[
vT
1

vT
2

]
· [v1v2]

=

[
vT
1 v1 vT

1 v2

vT
2 v1 vT

2 v2

]
=

[
||v1||2 0

0 ||v2||2
]

=

[
1 0
0 1

]
= I2

Similarly, V ·VT = I2

4.2 Changing the Axes - multi-dimensional case, d ≥ 2

Note that there was nothing in the arguments above that was special to 2 dimensions. Exactly
the same trick can be applied to change co-ordinate systems in d > 2-dimensional case. If
we let (x̃1, x̃2, . . . , x̃d) be our new axes and xi = [xi1, x

i
2, . . . , x

i
d]

T a data point expressed in
the original axes, we can project our point onto our new axis using:

VT · xi = x̃i.

As before, V = [v1,v2, . . . ,vd], each column vi being the unit direction vector of axis x̃i
orthogonal to the other direction vectors.

If we wanted to express x̃i in the original axes, we would simply use:

V · x̃i = xi

As mentioned before, we can collect all data points (as columns) in the so-called design
matrix X = [x1,x2, ...,xN ] (a d × N matrix). Then it is easy to show that if the data is
centered (zero mean), the covariance matrix can be estimated as (show it!)

C =
1

N
XX T .

Of course, the data can always be easily centered - just subtract from each data point the
mean of the whole data set D.

It is straightforward to show that the data expressed in the new coordinate system stays
centered. Since the data in the original system is centered, we have

1

N

N∑
i=1

xi = 0,
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where 0 is a d-dimensional vector of 0’s. Hence,

1

N

N∑
i=1

x̃i =
1

N

N∑
i=1

VTxi

= VT

[
1

N

N∑
i=1

xi

]
= VT0 = 0.

Note that the design matrix of the data in the new system can be obtained as:

X̃ = VTX

and, of course, we can transform back as

X = VX̃ .

Now, since the data x̃i is also centered, the co-variance matrix calculated in the new
system can be obtained as

C̃ =
1

N
X̃ X̃ T .

We ask: What is the relationship of the two covariance matrices C and C̃? After all, they
are covariance matrices of the same data, expressed in two different co-ordinate systems. We
have

C =
1

N

N∑
i=1

XX T

=
1

N

N∑
i=1

VX̃
(
VX̃

)T
=

1

N

N∑
i=1

VX̃ X̃ TVT

= V

[
1

N

N∑
i=1

X̃ X̃ T

]
VT

= VC̃VT

We have found that if we rotate our co-ordinate system as prescribed by directional vectors
stored as columns of matrix V, and these directional vectors from an orthonormal system,
then the relationship between the covariance matrix C calculated in the original system and
the covariance matrix C̃ calculated in the new system reads:

C = VC̃VT .
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4.3 Finding the right axes

We must now finally must face the question of what exactly the new axis should be? In
other words, we must, based on our data D expressed in the original co-ordinate system,
suggest a new co-ordinate system through supplying appropriate V that will result in diagonal
covariance matrix C̃. To do this, we need to learn about an important mathematical concept
- eigen decomposition of symmetric matrices into a set of eigenvectors and their associated
real eigenvalues.

Definition 4.1. Let A ∈ Rd×d be a d × d square symmetric matrix. A vector v ∈ Rd is
called an eigenvector of A if there exist a non-zero constant λ, such that

Av = λv.

The scalar λ ∈ R is called eigenvalue of A corresponding to the eigenvector v.

This concept of vectors that only ‘stretch’ or ‘contract’ under the transformation by a
matrix is important because it can be shown that

a) A d × d symmetric matrix will have exactly d eigenvectors v1,v2, . . . ,vd, with real
λ1, λ2, . . . , λd as the corresponding eigenvalues1.

b) For any square matrix A, we can decompose it into a special canonical form, known as
matrix diagonalisation:

A = VDVT ,

were V = [v1,v2, . . . ,vd] is a matrix formed by the eigenvectors of A (as columns),
and D = diag(λ1, λ2, . . . , λd) is a diagonal matrix with non-zero diagonal entries equal
to the eigenvalues of A.

Amazingly, this is exactly what we need! :-)
Using the facts above, we can equate the original covariance matrix C with the symmetric
matrix A, directional matrix V with the matrix containing eigenvectors of C and the trans-
formed covariance matrix C̃ with the diagonal matrix D = diag(λ1, λ2, . . . , λd) containing
eigenvalues of C. This means that the eigendecomposition of the original covariance matrix
C can give us both the directions of the new co-ordinate system (eigenvectors of C) and
variances V ar[X̃1], V ar[X̃2], . . . , V ar[X̃d] that our data has along the new co-ordinate axes
(eigenvalues of C appearing as diagonal elements of C̃).

To further demonstrate the arguments above, suppose that we are in two-dimensional
space. We want to show that Ca = VC̃VTa for every a ∈ R2. It suffices to show that

Cvi = VC̃VTvi for i = 1, 2, with V = [v1,v2] and C̃ =

[
λ1 0
0 λ2

]
.

We know that Cvi = λivi. Now,

1Strictly speaking this is true only if all eigenvalues are non-zero and different.
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VC̃VTv1 = VC̃

[
vT
1 v1

vT
2 v1

]
= VC̃

[
1
0

]
= V

[
λ1
0

]
= λ1v1

Using similar reasoning, Cv2 = VC̃VTv2.

To summarize, we have shown that the covariance matrix of the data in the original co-
ordinate system, in which the data was originally expressed, will most likely be non-diagonal.
However, by aligning the new axis with eigenvectors of the original covariance matrix, the
data will be expressed in such a way that the new covariance matrix will be diagonal. Not
only that, as a bonus point we get that the diagonal entries of the new covariance matrix,
which of course correspond to variances along the new axes, are exactly the eigenvectors of
the original covariance matrix. We are now ready to formulate the Principal Component
Analysis algorithm.

5 Principal Component Analysis (PCA)

We finally have the tools we need in order to perform PCA on a given data set D =
{x1,x2, . . . ,xN} in d-dimensional space:

1) Using the data, calculate the co-variance matrix C.

2) Calculate the eigenvectors v1, . . . ,vd of C (vectors for our new axes) and their corre-
sponding eigenvalues λ1, . . . , λd (the variability along each new axis), such that ||vi|| = 1
for every i and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0.2

3) Pick the first k of those eigenvectors such that a proportion of variability is ‘sufficiently’
preserved. We can find the fraction of data variability preserved in the first k dominant
axes, ρ, using the following expression:

ρ =
λ1 + λ2 + . . .+ λk
λ1 + λ2 + . . .+ λd

Suppose that we want to preserve a proportion ρ′ of variability. Then choose k eigen-
vectors such that ρ ≥ ρ′.

4) Project our data onto the new axes by using

(V(k))Txi = x̃i,

where V(k) = [v1, . . . ,vk].

2This ordering can be achieved in packages like Octave or MATLAB which saves us the task of doing it
manually.
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