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Intelligent Data Analysis - PCA

Discovering low-dimensional spatial layout in

higher dimensional spaces - 1-D/3-D example

The structure of points x = (x1, x2, x3)T in R3 is inherently 1-

dimensional, but the points are (linearly) embedded in a 3-dimensional

space.

x1

x3

x2

β
• 3 types of points x

• What is the best 1-D

projection direction?

• Why is β a good choice?

• Try to formalise your

intuition ...

• Draw the 1-D

projections
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Intelligent Data Analysis - PCA

Discovering low-dimensional spatial layout in

higher dimensional spaces - 2-D/3-D example

The structure of points x = (x1, x2, x3)T in R3 is inherently 2-

dimensional, but the points are (linearly) embedded in a 3-dimensional

space.

x1

x3

x2

β

• 3 types of points x

• What is the best 2-D

projection direction?

• Why is β a good choice?

• Try to formalise your

intuition ...

• Draw the 2-D

projections
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Intelligent Data Analysis - PCA

Random variables (RV)

Consider a random variable X taking on values in R.

x ∈ R are realisations of X

N repeated i.i.d. draws from X:

Imagine N independent and identically distributed random vari-

ables X1, X2, ..., XN . xi is a realisation of X i, i = 1, 2, ..., N .

Continuous RV:

Realisations are from a continuous subset A of R.

Probability density p(x):
∫

A
p(x) dx = 1.

Discrete RV:

Realisations are from a discrete subset A of R.

Probability distribution P (x):
∑

x∈A P (x) = 1.
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Intelligent Data Analysis - PCA

Characterising random variables

Mean of RV X: Center of gravity around which realisations of X

happen. First central moment.

E[X] =
∑

x∈A

x · P (X = x) or E[X] =

∫

A

x · p(x) dx

Variance of RV X: (Squared) fluctuations of realisations x around

the center of gravity E[X]. Second central moment.

V ar[X] = E[(X − E[X])2] =
∑

x∈A

(x − E[X])2 · P (X = x),

or

V ar[X] = E[(X − E[X])2] =

∫

A

(x − E[X])2 · p(x) dx
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Intelligent Data Analysis - PCA

Estimating central moments of X

N i.i.d. realisations of X:

x1, x2, ..., xN ∈ R.

E[X] ≈ Ê[X] =
1

N

N∑

i=1

xi

V ar[X] ≈ V̂ ar[X]ML =
1

N

N∑

i=1

(
xi − Ê[X]

)2

Unbiased estimation of variance:

1

N − 1

N∑

i=1

(
xi − Ê[X]

)2
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Intelligent Data Analysis - PCA

Several random variables

Consider 2 RVs X and Y

Still can compute central moments of individual RVs,

i.e. E[X], E[Y ] and V ar[X], V ar[Y ].

In addition we can ask whether X and Y are ‘statistically tight

together’ in some way

Covariance of RVs X and Y

Co-fluctuations around the means:

Introduce a new random variable Z = (X − E[X]) · (Y − E[Y ])

Cov[X, Y ] = E[Z] = E[(X − E[X]) · (Y − E[Y ])]
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Intelligent Data Analysis - PCA

Estimating covariance of X and Y

N i.i.d. realisations of (X, Y ):

(x1, y1), (x2, y2), ..., (xN , yN ) ∈ R2.

Cov[X, Y ] ≈ ̂Cov[X, Y ] =
1

N

N∑

i=1

(
xi − Ê[X]

)
·
(

yi − Ê[Y ]
)

For centred RVs (means are 0), we have

̂Cov[X, Y ] =
1

N

N∑

i=1

xiyi
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Intelligent Data Analysis - PCA

Covariance matrix of X, Y

Note that formally

V ar[X] = Cov[X, X]

and

V̂ ar[X] = ̂Cov[X, X].

Covariance matrix summarises the variance/covariance structure

in (X, Y ): 
 V ar[X] Cov[X, Y ]

Cov[Y, X] V ar[Y ]



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Intelligent Data Analysis - PCA

Covariance matrix of a vector RV

Consider a vector random variable

X = (X1, X2, ..., Xn)T

Covariance matrix of X is

Cov[X] =




V ar[X1] Cov[X1, X2] Cov[X1, X3] ... Cov[X1, Xn]

Cov[X2, X1] V ar[X2] Cov[X2, X3] ... Cov[X2, Xn]

Cov[X3, X1] Cov[X3, X2] V ar[X3] ... Cov[X3, Xn]

. . . ... .

. . . ... .

Cov[Xn, X1] Cov[Xn, X2] Cov[Xn, X3] ... V ar[Xn]




Note that Cov[X] is square and symmetric.
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Intelligent Data Analysis - PCA

Estimating Cov[X]

N i.i.d. realisations of the vector RV X = (X1, X2, ..., Xn)T :

x1 = (x1

1
, x1

2
, ..., x1

n)T ,x2 = (x2

1
, x2

2
, ..., x2

n)T , ...,xN = (xN
1

, xN
2

, ..., xN
n )T .

Collect the realisations xi of X as columns of the design matrix

X = [x1,x2, ...,xN ].

Assume the RV X is centred (E[Xi] = 0, i = 1, 2, ..., n).

Then

Cov[X] ≈ Ĉov[X] =
1

N
XX T

Peter Tiňo 10



Intelligent Data Analysis - PCA

A 2-D example

Cov[X] =


 V ar[X1] Cov[X1, X2]

Cov[X2, X1] V ar[X2]




x2

x1

• Cov[X1, X2] = 0

• V ar[X1] << V ar[X2]

• Model:

V ar[X2] = V ,

V ar[X1] = α · V ,

0 < α << 1.
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Intelligent Data Analysis - PCA

2-D example - Continued

Note

Cov[X]


0

1


 = V


0

1




Cov[X]


1

0


 = (αV )


1

0




Directions of both (0, 1)T and (1, 0)T are preserved by applying

Cov[X] as a linear operator, but since

α · V << V,

the image of (1, 0)T is much shorter than that of (0, 1)T .
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Intelligent Data Analysis - PCA

Another 2-D example

x2

1x

• Cov[X1, X2] = 0

• V ar[X1] >> V ar[X2]

• α >> 1

• Cov[X]


1

0


 = (αV )


1

0




• Cov[X]


0

1


 = V


0

1




This time, the image of (1, 0)T is much longer than that of (0, 1)T .
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Intelligent Data Analysis - PCA

Yet another 2-D example
x2

x1

• V ar[X1] = V ar[X2] = V

• Cov[X1, X2] = α · V

• 0 < α < 1

• Cov[X]


1

0


 = V


1

α




• Cov[X]


0

1


 = V


α

1




Directions of the coordinate axis are not preserved by the action

of Cov[X].
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Intelligent Data Analysis - PCA

2-D example - Continued

But

Cov[X]


1

1


 = (1 + α)V


1

1




Cov[X]


 1

−1


 = (1 − α)V


 1

−1




Note: (1 + α)V > (1 − α)V

Directions invariant to the action of Cov[X] correspond to the

‘principal variance directions’. The corresponding multiplicative

constants quantify the extent of variation along the invariant di-

rections.
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Intelligent Data Analysis - PCA

Eigenvalues and eigenvalues of a symmetric

positive definite matrix

Consider an n × n symmetric positive definite matrix A.

A vector v ∈ Rn, such that

Av = λv

is an eigenvector of A and the corresponding scalar λ > 0 is the

eigenvalue associated with v.

Eigenvectors (normalized to unit length) – the invariant directions

in Rn when considering the matrix A as a linear operator on Rn.

Magnitudes of the eigenvalues – quantify the ranges of magnifi-

cation/contraction along the invariant directions.
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Intelligent Data Analysis - PCA

PCA for dimensionality reduction

1. Given N centred data points xi = (xi
1
, xi

2
, ..., xi

n)T ∈ Rn, i =

1, 2, ..., N , construct the design matrix X = [x1,x2, ...,xN ].

2. Estimate the covariance matrix: C = 1

N
XX T

3. Compute eigen-decomposition of C.

All eigenvectors vj are normalized to unit length.

4. Select only the eigenvectors vj, j = 1, 2, ..., k < n, with large

enough eigenvalues λj.

5. Project the data points xi to the hyperplane defined by the span

of the selected eigenvectors vj: x̃i
j = vT

j xi

Amount of variance explained in the projections x̃i:
∑

k

`=1
λ`∑

n

`=1
λ`
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Intelligent Data Analysis - PCA

Data visualization using PCA

Select the 2 eigenvectors v1 and v2 with the largest eigenvalues

λ1 ≥ λ2 ≥λ3 ≥ ... ≥ λn

Represent points xi ∈ Rn by two-dimensional projections x̃i =

(x̃i
1
, x̃i

2
)T , where

x̃i
j = vT

j xi, j = 1, 2

Plot the projections x̃i
j on the computer screen.

You may use other eigenvectors vj with large enough eigenvalues

λj
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