Intelligent Data Analysis

Principal Component Analysis

Peter Tiño
School of Computer Science
University of Birmingham

Discovering low-dimensional spatial layout in
 higher dimensional spaces - 1-D/3-D example

The structure of points $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ in \mathbb{R}^{3} is inherently 1dimensional, but the points are (linearly) embedded in a 3-dimensional space.

- 3 types of points x
- What is the best 1-D projection direction?
- Why is β a good choice?
- Try to formalise your intuition ...
- Draw the 1-D projections

Discovering low-dimensional spatial layout in higher dimensional spaces - 2-D/3-D example

The structure of points $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ in \mathbb{R}^{3} is inherently 2dimensional, but the points are (linearly) embedded in a 3-dimensional space.

- 3 types of points x
- What is the best 2-D projection direction?
- Why is β a good choice?
- Try to formalise your intuition ...
- Draw the 2-D projections

Random variables (RV)

Consider a random variable X taking on values in \mathbb{R}. $x \in \mathbb{R}$ are realisations of X
N repeated i.i.d. draws from X :
Imagine N independent and identically distributed random variables $X^{1}, X^{2}, \ldots, X^{N} . x^{i}$ is a realisation of $X^{i}, i=1,2, \ldots, N$.

Continuous RV:

Realisations are from a continuous subset A of \mathbb{R}.
Probability density $p(x): \int_{A} p(x) \mathrm{d} x=1$.

Discrete RV:

Realisations are from a discrete subset A of \mathbb{R}.
Probability distribution $P(x): \quad \sum_{x \in A} P(x)=1$.

Characterising random variables

Mean of RV X : Center of gravity around which realisations of X happen. First central moment.

$$
E[X]=\sum_{x \in A} x \cdot P(X=x) \quad \text { or } \quad E[X]=\int_{A} x \cdot p(x) \mathrm{d} x
$$

Variance of RV X : (Squared) fluctuations of realisations x around the center of gravity $E[X]$. Second central moment.

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=\sum_{x \in A}(x-E[X])^{2} \cdot P(X=x),
$$

or

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=\int_{A}(x-E[X])^{2} \cdot p(x) \mathrm{d} x
$$

Estimating central moments of X

N i.i.d. realisations of X :
$x^{1}, x^{2}, \ldots, x^{N} \in \mathbb{R}$.

$$
\begin{gathered}
E[X] \approx \widehat{E[X}]=\frac{1}{N} \sum_{i=1}^{N} x^{i} \\
\operatorname{Var}[X] \approx \widehat{\operatorname{Var}[X}]_{M L}=\frac{1}{N} \sum_{i=1}^{N}\left(x^{i}-\widehat{E[X]}\right)^{2}
\end{gathered}
$$

Unbiased estimation of variance:

$$
\frac{1}{N-1} \sum_{i=1}^{N}\left(x^{i}-\widehat{E[X]}\right)^{2}
$$

Several random variables

Consider 2 RVs X and Y

Still can compute central moments of individual RVs,
i.e. $E[X], E[Y]$ and $\operatorname{Var}[X], \operatorname{Var}[Y]$.

In addition we can ask whether X and Y are 'statistically tight together' in some way

Covariance of RVs X and Y
Co-fluctuations around the means:
Introduce a new random variable $Z=(X-E[X]) \cdot(Y-E[Y])$

$$
\operatorname{Cov}[X, Y]=E[Z]=E[(X-E[X]) \cdot(Y-E[Y])]
$$

Estimating covariance of X and Y

N i.i.d. realisations of (X, Y) :
$\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{N}, y^{N}\right) \in \mathbb{R}^{2}$.

$$
\left.\operatorname{Cov}[X, Y] \approx \widehat{\operatorname{Cov}[X, Y]}=\frac{1}{N} \sum_{i=1}^{N}\left(x^{i}-\widehat{E[X]}\right) \cdot\left(y^{i}-\widehat{E[Y}\right]\right)
$$

For centred RVs (means are 0), we have

$$
\widehat{\operatorname{Cov}[X, Y]}=\frac{1}{N} \sum_{i=1}^{N} x^{i} y^{i}
$$

Covariance matrix of X, Y

Note that formally
$\operatorname{Var}[X]=\operatorname{Cov}[X, X]$
and
$\widehat{\operatorname{Var}[X}]=\widehat{\operatorname{Cov}[X, X]}$.

Covariance matrix summarises the variance/covariance structure in (X, Y) :

$$
\left[\begin{array}{cc}
\operatorname{Var}[X] & \operatorname{Cov}[X, Y] \\
\operatorname{Cov}[Y, X] & \operatorname{Var}[Y]
\end{array}\right]
$$

Covariance matrix of a vector RV

Consider a vector random variable $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$

Covariance matrix of \mathbf{X} is
$\operatorname{Cov}[\mathbf{X}]=\left[\begin{array}{ccccc}\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \operatorname{Cov}\left[X_{1}, X_{3}\right] & \ldots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\ \operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Var}\left[X_{2}\right] & \operatorname{Cov}\left[X_{2}, X_{3}\right] & \ldots & \operatorname{Cov}\left[X_{2}, X_{n}\right] \\ \operatorname{Cov}\left[X_{3}, X_{1}\right] & \operatorname{Cov}\left[X_{3}, X_{2}\right] & \operatorname{Var}\left[X_{3}\right] & \ldots & \operatorname{Cov}\left[X_{3}, X_{n}\right] \\ \cdot & \cdot & \cdot & \ldots & . \\ \cdot & \cdot & \cdot & \ldots & . \\ \operatorname{Cov}\left[X_{n}, X_{1}\right] & \operatorname{Cov}\left[X_{n}, X_{2}\right] & \operatorname{Cov}\left[X_{n}, X_{3}\right] & \ldots & \operatorname{Var}\left[X_{n}\right]\end{array}\right]$

Note that $\operatorname{Cov}[\mathbf{X}]$ is square and symmetric.

Estimating $\operatorname{Cov}[\mathbf{X}]$

N i.i.d. realisations of the vector $\mathrm{R} V \mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$:
$\mathbf{x}^{1}=\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{n}^{1}\right)^{T}, \mathbf{x}^{2}=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)^{T}, \ldots, \mathbf{x}^{N}=\left(x_{1}^{N}, x_{2}^{N}, \ldots, x_{n}^{N}\right)^{T}$.

Collect the realisations \mathbf{x}^{i} of \mathbf{X} as columns of the design matrix $\mathcal{X}=\left[\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N}\right]$.

Assume the RV X is centred $\left(E\left[X_{i}\right]=0, i=1,2, \ldots, n\right)$.

Then

$$
\operatorname{Cov}[\mathbf{X}] \approx \widehat{\operatorname{Cov}[\mathbf{X}}]=\frac{1}{N} \mathcal{X} \mathcal{X}^{T}
$$

A 2-D example

$$
\operatorname{Cov}[\mathbf{X}]=\left[\begin{array}{cc}
\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Var}\left[X_{2}\right]
\end{array}\right]
$$

- $\operatorname{Cov}\left[X_{1}, X_{2}\right]=0$
- $\operatorname{Var}\left[X_{1}\right] \ll \operatorname{Var}\left[X_{2}\right]$
- Model:
$\operatorname{Var}\left[X_{2}\right]=V$,
$\operatorname{Var}\left[X_{1}\right]=\alpha \cdot V$,
$0<\alpha \ll 1$.

2-D example - Continued

Note

$$
\begin{gathered}
\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=V\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=(\alpha V)\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gathered}
$$

Directions of both $(0,1)^{T}$ and $(1,0)^{T}$ are preserved by applying $\operatorname{Cov}[\mathbf{X}]$ as a linear operator, but since

$$
\alpha \cdot V \ll V
$$

the image of $(1,0)^{T}$ is much shorter than that of $(0,1)^{T}$.

Another 2-D example

- $\operatorname{Cov}\left[X_{1}, X_{2}\right]=0$
- $\operatorname{Var}\left[X_{1}\right] \gg \operatorname{Var}\left[X_{2}\right]$
- $\alpha \gg 1$
- $\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}1 \\ 0\end{array}\right]=(\alpha V)\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}0 \\ 1\end{array}\right]=V\left[\begin{array}{l}0 \\ 1\end{array}\right]$

This time, the image of $(1,0)^{T}$ is much longer than that of $(0,1)^{T}$.

Yet another 2-D example

- $\operatorname{Var}\left[X_{1}\right]=\operatorname{Var}\left[X_{2}\right]=V$
- $\operatorname{Cov}\left[X_{1}, X_{2}\right]=\alpha \cdot V$
- $0<\alpha<1$
- $\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}1 \\ 0\end{array}\right]=V\left[\begin{array}{l}1 \\ \alpha\end{array}\right]$
- $\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}0 \\ 1\end{array}\right]=V\left[\begin{array}{l}\alpha \\ 1\end{array}\right]$

Directions of the coordinate axis are not preserved by the action of $\operatorname{Cov}[\mathbf{X}]$.

2-D example - Continued

But

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{l}
1 \\
1
\end{array}\right] & =(1+\alpha) V\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\operatorname{Cov}[\mathbf{X}]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] & =(1-\alpha) V\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Note: $(1+\alpha) V>(1-\alpha) V$

Directions invariant to the action of $\operatorname{Cov}[\mathbf{X}]$ correspond to the 'principal variance directions'. The corresponding multiplicative constants quantify the extent of variation along the invariant directions.

Eigenvalues and eigenvalues of a symmetric positive definite matrix

Consider an $n \times n$ symmetric positive definite matrix \mathcal{A}.

A vector $\mathbf{v} \in \mathbb{R}^{n}$, such that

$$
\mathcal{A} \mathbf{v}=\lambda \mathbf{v}
$$

is an eigenvector of \mathcal{A} and the corresponding scalar $\lambda>0$ is the eigenvalue associated with v.

Eigenvectors (normalized to unit length) - the invariant directions in \mathbb{R}^{n} when considering the matrix \mathcal{A} as a linear operator on \mathbb{R}^{n}.

Magnitudes of the eigenvalues - quantify the ranges of magnification/contraction along the invariant directions.

PCA for dimensionality reduction

1. Given N centred data points $\mathbf{x}^{i}=\left(x_{1}^{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right)^{T} \in \mathbb{R}^{n}, i=$ $1,2, \ldots, N$, construct the design matrix $\mathcal{X}=\left[\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N}\right]$.
2. Estimate the covariance matrix: $\mathcal{C}=\frac{1}{N} \mathcal{X} \mathcal{X}^{T}$
3. Compute eigen-decomposition of \mathcal{C}. All eigenvectors \mathbf{v}_{j} are normalized to unit length.
4. Select only the eigenvectors $\mathbf{v}_{j}, j=1,2, \ldots, k<n$, with large enough eigenvalues λ_{j}.
5. Project the data points \mathbf{x}^{i} to the hyperplane defined by the span of the selected eigenvectors $\mathbf{v}_{j}: \tilde{x_{j}^{i}}=\mathbf{v}_{j}^{T} \mathbf{x}^{i}$

Amount of variance explained in the projections $\tilde{\mathbf{x}^{i}}: \frac{\sum_{\ell=1}^{k} \lambda_{\ell}}{\sum_{\ell=1}^{n} \lambda_{\ell}}$

Data visualization using PCA

Select the 2 eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} with the largest eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{n}
$$

Represent points $\mathbf{x}^{i} \in \mathbb{R}^{n}$ by two-dimensional projections $\tilde{\mathbf{x}^{i}}=$ $\left(\tilde{x_{1}^{i}}, \tilde{x_{2}^{i}}\right)^{T}$, where

$$
\tilde{x_{j}^{i}}=\mathbf{v}_{j}^{T} \quad \mathbf{x}^{i}, \quad j=1,2
$$

Plot the projections $\tilde{x_{j}^{i}}$ on the computer screen.

You may use other eigenvectors \mathbf{v}_{j} with large enough eigenvalues λ_{j}

