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Intelligent Data Analysis - PCA

Discovering low-dimensional spatial layout Iin
higher dimensional spaces - 1-D/3-D example
The structure of points X = (z1,x2,23)T in R3 is inherently 1-

dimensional, but the points are (linearly) embedded in a 3-dimensional
Space. A3

e 3 types of points X

e \What is the best 1-D
projection direction?

.
2"
>

e Why is 8 a good choice?

e [ry to formalise your
intuition ...

. e Draw the 1-D
\ projections
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Intelligent Data Analysis - PCA

Discovering low-dimensional spatial layout Iin
higher dimensional spaces - 2-D/3-D example

The structure of points X = (z1,x2,23)T in R3 is inherently 2-
dimensional, but the points are (linearly) embedded in a 3-dimensional
space. RE

e 3 types of points X

........... ‘e What is the best 2-D
projection direction?

e Why is 8 a good choice?

e [ry to formalise your
intuition ...

e Draw the 2-D
projections
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Intelligent Data Analysis - PCA

Random variables (RV)

Consider a random variable X taking on values in R.
x € R are realisations of X

N repeated i.i.d. draws from X:
Imagine N independent and identically distributed random vari-
ables X! X2, ..., X". 2% is a realisation of X?, i =1,2,...,N.

Continuous RV:
Realisations are from a continuous subset A of R.
Probability density p(z): [, p(x) dz = 1.

Discrete RV:
Realisations are from a discrete subset A of R.
Probability distribution P(x): > ., P(z) = 1.
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Intelligent Data Analysis - PCA

Characterising random variables

Mean of RV X: Center of gravity around which realisations of X
happen. First central moment.

E[X] = Z x- P(X = x) or E[X] = /A:U -p(x) dz

rcA

Variance of RV _X: (Squared) fluctuations of realisations x around
the center of gravity F[X]. Second central moment.

Var[X] = B[(X — E[X])?] = ) (z - E[X])* - P(X = ),

rcA

or
Var[X] = B[(X — E[X])?] = /A (x — E[X])? - p(z) da
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Intelligent Data Analysis - PCA

Estimating central moments of X

N i.i.d. realisations of X:

zl x?, ..., 2N e R.
BElX]~ BX] = 3 &
~ = — X
N =1
/\ 1 XN 2
Var[X] ~ Var[X L:N; (:13 E )

Unbiased estimation of variance:
N

N1—1Z (xi_E[X]y

1=1
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Intelligent Data Analysis - PCA

Several random variables
Consider 2 RVs X and Y

Still can compute central moments of individual RVSs,
i.e. E[X], E|Y] and Var[X]|, VarlY].

In addition we can ask whether X and Y are ‘statistically tight
together’ in some way

Covariance of RVs X and Y
Co-fluctuations around the means:
Introduce a new random variable Z = (X — E[X]) - (Y — E[Y])

Cov|X, Y] = E|Z] = E[(X — E[X]) - (Y — E[Y])]
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Intelligent Data Analysis - PCA

Estimating covariance of X and Y

N i.i.d. realisations of (X,Y):
(= yh), (2%, 9%), ..., (2N, yN) € R

— 1

Cov|X,Y]| = ~ Z 'y’
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Intelligent Data Analysis - PCA

Covariance matrix of X,Y

Note that formally
Var[X] = Cov| X, X]
and

—— e~

Var|X]| = Cov[X, X].

Covariance matrix summarises the variance/covariance structure
in (X,Y):

Var|X] CovlX,Y]
_CO’U Y, X] VarlY]
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Intelligent Data Analysis - PCA

Covariance matrix of a vector RV

Consider a vector random variable
X = (X1, Xo, ...,Xn)T

Covariance matrix of X is

Var|X] Cov[X1, X2 Cov[X1,X3] ... Cov[Xi,X,]

Cov| X2, X1] Var|Xs] Cov[X2, X3] ... Cov[Xa, X,]

Cov[X3,X1] Cov[X3, X2] Var|Xs] . Cov|X3,X,

Cov[X] = ' '
Cov|X,, X1] Cov|X,, X2] Cov[X,, X3] ... Var|X,]

Note that Cov[X] is square and symmetric.
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Intelligent Data Analysis - PCA

Estimating Cov[X]

N i.i.d. realisations of the vector RV X = (Xl,Xg,.. Xn)t

Xl — (ZL’%,ZC%, 1)T X2 (5’3175‘5%,--- x%)T (2131 » Lo ’“.#Esz)T_

Collect the realisations x* of X as columns of the design matrix
X =[xt x2, ... xV].

Assume the RV X is centred (E[X;]=0,i=1,2,...,n).

T hen
—— 1

Cov[X] =~ Cov[X] = NXXT
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Intelligent Data Analysis - PCA

A 2-D example

Var[Xi]
Cov[X] =
CO’U [XQ, Xl]
A2
Y

CO’U[Xl, XQ]
Var|Xa]

® CO’U[Xl,XQ] =0
o Var(X ] << Var|[X,]

e Model:
Var|Xs| =V,
Var/Xi|=a -V,
0 <a<<l.
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Intelligent Data Analysis - PCA

2-D example - Continued

Note - -
Cov[X] =V

Cov[X] = (aV)

Directions of both (0,1) and (1,0)! are preserved by applying
Cov[X] as a linear operator, but since

a-V <<V,

the image of (1,0)? is much shorter than that of (0,1)7.
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Intelligent Data Analysis - PCA

Another 2-D example

A2
® CO’U[Xl,XQ] =0
o Var(Xi| >> Var[X,]
e a>>1
X1 1
o Cov[X] = (aV)
0
0 0
o Cov|X] =V
Y 1 1

This time, the image of (1,0)? is much longer than that of (0,1)7.
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Intelligent Data Analysis - PCA

Yet another 2-D example

sz K

o Var(Xi]=Var|Xa] =V
o Cov[X1,Xe]=a-V

o D<ax<l
= 1 1
o Cov[X] =V
0 o
0 o
o Cov[X] =V
\ 1 1

Directions of the coordinate axis are not preserved by the action
of Cov[X].
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Intelligent Data Analysis - PCA

2-D example - Continued

But o o
1 1
Cov[X] =14+ a)V
1 1
1 1
Cov[X] =(1—-a)V
—1 —1

Note: (1+a)V > (1 —a)V

Directions invariant to the action of Cov|[X] correspond to the
‘principal variance directions’. The corresponding multiplicative
constants quantify the extent of variation along the invariant di-
rections.
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Intelligent Data Analysis - PCA

Eigenvalues and eigenvalues of a symmetric
positive definite matrix

Consider an n x n symmetric positive definite matrix A.

A vector v € R", such that
Av = \v

is an eigenvector of A and the corresponding scalar A > 0 is the
eigenvalue associated with v.

Eigenvectors (normalized to unit length) — the invariant directions
in R™ when considering the matrix A as a linear operator on R".

Magnitudes of the eigenvalues — quantify the ranges of magnifi-
cation/contraction along the invariant directions.
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Intelligent Data Analysis - PCA

PCA for dimensionality reduction

1. Given N centred data points x' = (z¢,%,...,z5)1 € R", i =
1,2,...,N, construct the design matrix X = [x!,x2,...,x"].

2. Estimate the covariance matrix: C = %XXT

3. Compute eigen-decomposition of C.
All eigenvectors v, are normalized to unit length.

4. Select only the eigenvectors v;, 7 = 1,2,...,k < n, with large
enough eigenvalues A;.

5. Project the data points x* to theNhyperplane defined by the span

of the selected eigenvectors v;: x; = vf X

Amount of variance explained in the projections X¢: S
£=1
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Intelligent Data Analysis - PCA

Data visualization using PCA

Select the 2 eigenvectors v; and vy with the largest eigenvalues

Al 2 A2 2A3 2 ... 2 Ap

Represent points x{ € R® by two-dimensional projections xi =
(zt,24)", where

X', j=1,2

A
=V;

j
Plot the projections a;j. on the computer screen.

You may use other eigenvectors v, with large enough eigenvalues
Aj
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