
Intelligent Data Analysis
Lecture Notes on

PageRank

Peter Tiňo

1 “Mining the Web”

We will now look at how to quantify the ‘significance’ of documents/websites on the web.
In previous lectures we were able to represent documents as vectors and analyse how similar
they are against a set of terms in our query. The problem comes when we want to find
documents on the massive World Wide Web; there are likely to be many documents that
match our query rather well! We need to decide on some form of ranking of the query results,
hopefully giving the most ‘interesting’ results the priority. How can this be achieved?

The web is a huge interconnection structure among pages that can be represented as a
graph: the web pages correspond to ‘nodes’ and the hyperlinks linking these pages become
‘edges’ between the nodes. We can exploit the ‘democratic’ nature of the web in order
to assign a ‘significance factor’ to each page based on how it is embedded into the web,
meanwhile neglecting its actual content. The rough idea is that if a given page has many
other pages pointing to it, its content is probably worthwhile.

𝑃𝑖 𝑃𝑗
"𝑃𝑖 𝑙𝑖𝑛𝑘𝑠 𝑡𝑜 … "

𝑤𝑒𝑏 𝑝𝑎𝑔𝑒

2 The PageRank equation

For a web page Pi, let xi ≥ 0 be its ‘authority’ that somehow quantifies its ‘importance’ or
‘significance’. The authority xi needs to take into account:

1

i) The number of incoming links or citations - more links to Pi should indicate higher
significance,

ii) The authority of the pages that cite the page in question - the web page will ‘look good’
if more authoritative pages cite it rather than a lot of ‘weaker’ pages.

We denote by Pa(Pi) the set of parents of Pi (the set of pages that link (point) to Pi),
and by hj the number of outgoing links from page Pj. These ingredients are used to form
the PageRank equation, derived by Google founders Larry Page and Sergey Brin while they
were still students at Stanford in 1998.

Each page Pj ∈ Pa(Pi) pointing to page Pi increases the authority xi by xj/hj. This is
because only a fraction of total authority xj flows to Pi - the authority xj of page Pj is evenly
distributed among all outgoing links from Pj. So the authority collected by Pi from the web
is

x̃i =
∑

Pj∈Pa(Pi)

xj
hj
.

Now imagine that we would like all pages to have at least some default authority. This
would give some minimal visibility to weak or new pages on the web. Let us construct the
total authority of Pi from two ingredients: (1) an authority of 1 that is given by default to all
pages and (2) the authority x̃i earned by Pi through citations from the web. The authority
of Pi is then obtained as a convex combination of (1) and (2):

xi = (1− d) · 1 + d · x̃i,

where the mixing weights are determined by the ‘discount factor’ 0 < d < 1. We can finally
formulate PageRank equations (Brin & Page, 1998) for determining authorities of N pages
on the web:

xi = (1− d) + d
∑

Pj∈Pa(Pi)

xj
hj
, i = 1, 2, ..., N. (1)

We will apply PageRank to a small example. Consider a web with pages P1, P2, P3 and
P4. They link to each other according to the following diagram:

2

𝑃1 𝑃2

𝑃3 𝑃4

We calculate the authority of each page as follows:

x1 = (1− d) + d
(x4

2

)
x2 = (1− d) + d

(x1
2

)
x3 = (1− d) + d

(x1
2

+
x4
2

)
x4 = (1− d) + d (x2 + x3)

Notice that to calculate the authority of a page it is not enough to just use PageRank;
solving for each xi requires us to solve a system of N linear equations of N unknowns xi,
i = 1, 2...., N (there are N pages on the web) given as the matrix equation

x1
x2
...
xN

 = (1− d)

1
1
...
1

+ d

w1,1 w1,2 . . . w1,N

w2,1 w2,2 . . . w2,N
...

...
. . .

...
wN,1 wN,2 . . . wN,N

x1
x2
...
xN

 , (2)

written in a compact form as

x = (1− d) · 1N + d ·Wx.

3

Elements of the coupling matrix W are

wi,j =

{ 1
hj

, if there is a link from Pj to Pi

0 , otherwise.

This system of equations can be solved using standard linear algebra as follows (IN is the
N ×N identity matrix) :

x = (1− d) · 1N + d ·Wx

⇔ (IN − d ·W)x = (1− d) · 1N

⇔ Ax = b

⇔ x = A−1b,

where A = IN − d ·W and b = (1− d) · 1N and we assume A is invertible1.

We see that finding the authority of each page involves calculating an inverse matrix.
However, this is a major problem since computing A−1 for very large N is infeasible. To
work around this issue, we will need a bit of knowledge on dynamical systems.

3 Contraction mappings

For a vector x, define F (x) to be an affine mapping that takes a vector input and outputs
another vector. Such mappings are of the form

F (x) = Ax + b,

where b is a ‘shift’ vector and A is a matrix defining a linear transformation. In the case of
PageRank,

F (x) = (1− d) · 1N + d ·Wx,

so we see that d ·W maps x to another vector while (1− d) · 1N further shifts this mapped
vector.

We are interested in finding special vectors x∗ where applying F on them does not do
anything at all i.e. F (x∗) = x∗. We say that x∗ is a fixed point of the mapping F . One
way to find these points is by using a iterative method; suppose that x(0) is a random initial
vector we start with at time t = 0. Using this vector, obtain x(1) = F (x(0)), the vector we
get at time t = 1. Under some assumptions on F , we can continue with this process until we
find a fixed point:

1If A is not invertible, or is ill-conditioned, we would need to resort to pseudoinverse, or SVD. This is
beyond the scope of this module.

4

x(1) = F (x(0))

x(2) = F (x(1))

...

x(t+ 1) = F (x(t))

...

x∗ = F (x∗)

(3)

But what exactly are the properties of F such that its fixed point x∗ can be found by
simple repeated applications of F from arbitrary initial condition x(0) and, in addition, this
fixed point is guaranteed to exist and is unique? We will show that it is sufficient to demand
that F “shrinks distances” as it maps vectors x to their images F (x).

Definition 3.1. The mapping F is a contraction mapping if for any two points x1 and x2,

||F (x1)− F (x2)|| ≤ ρ||x1 − x2||, (4)

where ρ ∈ (0, 1) (Lipschitz constant).

When we apply F to x1 and x2, they get squeezed closer together by a factor of at least
ρ in their original distance. Notice that, if F n(x) is a mapping of x under F n times, then

||F n(x1)− F n(x2)|| ≤ ρ||F (n−1)(x1)− F (n−1)(x2)||
≤ ρ2||F (n−2)(x1)− F (n−2)(x2)||
≤

...

≤ ρn||x1 − x2||.

We see that the distances decay exponentially fast since 0 < ρ < 1. The following figure
illustrates this observation, showing how these two vectors move closer together every time
F is applied.

5

𝒙1

𝒙2

𝐹(𝒙1)

𝐹(𝒙2)

𝐹𝟐(𝒙1)

𝐹𝟐(𝒙2)

𝐹𝟑(𝒙1)

𝐹𝟑(𝒙2)

||𝒙1 - 𝒙2 || ||𝐹(𝒙1) - 𝐹(𝒙2) ||

Now we address the following question: If I keep applying a contraction mapping F , start-
ing from any vector x, will the images converge to a point? Observe that from contractivity
of F , we have:

||F n−1(x)− F n(x)|| ≤ ρ||F n−2(x)− F n−1(x)||.

This says that the distances between subsequent images of x under F get smaller and smaller,
converging (in a complete metric space) to a point that does not move at all under the action
of F , which is our fixed point.

To show that contractive mappings cannot have two distinct fixed points, suppose x and
y are fixed points of F , i.e. F (x) = x and F (y) = y. Note that in this case,

||F (x)− F (y)|| ≤ ρ||x− y|| ⇔ ||x− y|| ≤ ρ||x− y||.

But this inequality is possible only when x = y! Therefore, we’ve shown that contraction
mappings always exhibit a single unique fixed point.

Lastly, we still need to answer one very important question: Is the PageRank mapping

F (x) = (1− d) · 1N + d ·Wx

a contraction? The answer is yes. To see this, consider any two points x1 and x2 in RN . We
have,

||F (x1)− F (x2)|| = ||(1− d) · 1N + d ·Wx1 − (1− d) · 1N − d ·Wx2||
= d||Wx1 −Wx2||
= d||W(x1 − x2)||
< d||x1 − x2||.

6

The last inequality holds because we are multiplying (x1 − x2) by the page coupling ma-
trix W, where absolute majority of the entries are 0 (the page interconnection structure is
very sparse) and non-zero entries are usually fractions < 1. Maximum entry value is 1, if a
page points to a single page.

We have thus shown that to solve the PageRank equation

x = (1− d) · 1N + d ·Wx,

we can simply start with an arbitrary assignment of authorities to pages, x(0), and iterate
the PageRank equation few times

x(t+ 1) = (1− d) · 1N + d ·Wx(t).

This process will approach the solution

x∗ = (1− d) · 1N + d ·Wx∗,

rather quickly, since the distances between the iterates x(t) decay exponentially fast.

4 Authority of web page communities

We will now investigate what authority PageRank assigns to a collection of web pages G,
which we will call a community of web pages. We will categorise out web pages into three
different sets:

i) Into(G) - This set contains the set of pages outside G that have a link pointing to any
page in G,

ii) Out(G) - The set of pages from within G that link to pages outside G,

iii) dp(G) - The set of dangling pages within G. These are pages without any outgoing
link, i.e. pages that that do not link to any other page.

The authority of a community G is accumulated through authorities of individual pages
inside it:

EG =
∑
p∈G

xp. (5)

EG thus represents the visibility or energy of G.

Figure 1 provides an illustration of a community of web pages (the blue nodes), with one
dangling page present (the grey node) and a number of external pages that link to G (the
green nodes). Of course, the more authority our pages in G have, the more visible G is on
the web. However, designers of communities of web pages need to address the following ques-
tion: How do we maximise (5) if we have no control over how web pages on the web link to G?

7

𝐺

Figure 1: An example of a community of web pages denoted by G. The grey node is an example
of a dangling page as it has no ‘out’ links, and the green nodes outside G point to or receive a link
from a page in the community, affecting the overall ‘energy’ or ‘visibility’ it has.

Some researchers have investigated this matter (Bianchini, Gori & Scarselli, 2005), and
found that EG can be decomposed based on our sets Into(G), Out(G) and dp(G) as follows:

EG = |G|+ EInto
G − EOut

G − Edp
G , (6)

where |G| is the size of G (number of pages in the community); EInto
G is the energy flowing to

G from pages outside G that point to it; EOut
G is the energy that leaks out from G through

links from pages in G pointing outside it; finally, Edp
G is the energy lost due to dangling pages.

Before we write expressions for the decomposition terms in (6), note that the entity we
are interested in now is not a single page, but a set of pages G. Recall that if a page p points
to another page q, only the fraction xp/hp of authority xp flows to q, since the authority xp
is equally split among all outgoing links from p. In our setting, if a page p points to G from
outside G, it can point to one or several pages in G. Hence to establish what fraction of xp
flows to G, we must calculate the fraction ρp of outgoing links from p that point to G. The
authority flowing from p to G is then ρpxp.

Consider now a page p inside the community G. The fraction of its outgoing links that
stay inside G is (of course) ρp, meaning that the fraction of its outgoing links that point
outside G is 1 − ρp. Hence, the fraction of authority xp leaking out of G is (1 − ρp)xp. We
are now ready to express the decomposition terms in (6):

8

EInto
G =

d

1− d
∑

p∈Into(G)

xpρp,

EOut
G =

d

1− d
∑

p∈Out(G)

xp(1− ρp),

Edp
G =

d

1− d
∑

p∈dp(G)

xp.

(7)

From (7), we can learn useful lessons about how to structure our community of web pages
to ensure we maximise its energy:

i) Whenever possible, avoid creating dangling pages within the community. At least put
a link to the main page of the community.

ii) Care about referencing pages outside the community; linking to other pages from your
main page may not be a good idea, as more authority flows out.

9

